JAYARAJ ANNAPACKIAM COLLEGE FOR WOMEN (AUTONOMOUS) A Unit of the Sisters of St. Anne of Tiruchirappalli Accredited with 'A' Grade (3<sup>rd</sup> Cycle) by NAAC DST - FIST Supported College Since 2015 (Affiliated to Mother Teresa Women's University, Kodaikanal) PERIYAKULAM – 625 601, THENI DT. TAMIL NADU.



# M.SC. MATHEMATICS 2017 - 2020

1



#### **DEPARTMENT OF MATHEMATICS**

## **PROGRAMME OUTCOME - P.G.**

| PO. NO | UPON COMPLETION OF THIS PROGRAM THE STUDENTS WILL BE ABLE                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
|        | то                                                                                                                             |
| 1.     | Endow with in-depth knowledge, analyze and apply the understanding of their discipline for the betterment of self and society. |
| 2.     | Synthesize ideas from various disciplines, enhance the interdisciplinary knowledge and extend it for research.                 |
| 3.     | Gain confidence and skills to communicate orally/ verbally in research platforms and state a clear research finding.           |
| 4.     | Develop problem solving and computational skills and gain confidence to appear the competitive examination.                    |
| 5.     | Enhance knowledge regarding research by accumulating practical knowledge in specific areas of research.                        |
| 6.     | Achieve idealistic goals and enrich the values to tackle the societal challenges.                                              |

## **PROGRAMME SPECIFIC OUTCOMES - P.G.**

| PSO.  | UPON COMPLETION OF THE PROGRAM THE STUDENTS                                                         | РО     |
|-------|-----------------------------------------------------------------------------------------------------|--------|
| NO.   | WILL BE ABLE TO                                                                                     | MAPPED |
| PSO-1 | Solve complex mathematical problems using the knowledge of pure and applied mathematics             | PO-1   |
| PSO-2 | Involve in research by incorporating the mathematical tools in science and technology               | PO-5   |
| PSO-3 | Analyze and apply logical arguments to understand and apply<br>mathematical concepts and techniques | PO-3   |
| PSO-4 | Model and solve real life problems using mathematical                                               | PO-4   |
|       | techniques and to develop scientific outlook in other disciplines                                   | PO-2   |
| PSO-5 | Interpret creatively the mathematical facts and figures to                                          | PO-1   |
|       | inculcate the individual scholarly research and to crack                                            | PO-5   |
|       | competitive examinations and procure their professional career                                      | PO-6   |

| P.G. | <b>COURSE PATTERN</b> | (2017 - 2020) |
|------|-----------------------|---------------|
|------|-----------------------|---------------|

| Sem.                    | Sub. Code  | Subject Title                | Hours | Credits |
|-------------------------|------------|------------------------------|-------|---------|
|                         | 17PMA1C01  | Algebra - I                  | 6     | 5       |
|                         | 17PMA1C02  | Analysis - I                 | 6     | 5       |
|                         | 17PMA1C03  | Advanced Calculus            | 6     | 5       |
|                         | 17PMA1C04  | Classical Mechanics          | 6     | 5       |
| I                       | 17PMA1E1A/ | Numerical Analysis/          | 6     | Λ       |
|                         | 17PMA1E1B  | Optimization Theory          | 0     | 4       |
|                         |            | Total                        | 30    | 24      |
|                         | 17PMA2C05  | Algebra - II                 | 6     | 5       |
|                         | 17PMA2C06  | Analysis - II                | 6     | 5       |
|                         | 17PMA2C07  | Mathematical Statistics      | 6     | 4       |
| II                      | 17PMA2E2A/ | Differential Geometry/       | 6     | Λ       |
|                         | 17PMA2E2B  | Graph Theory                 | 0     | 4       |
|                         | 17PMA2I01  | IDC - Mathematical Modelling | 4     | 3       |
|                         | 17PGS2S01  | Soft Skills                  | 2     | 1       |
|                         |            | Total                        | 30    | 22      |
|                         | 17PMA3C08  | Field Theory and Lattices    | 6     | 5       |
|                         | 17PMA3C09  | Тороlоду                     | 6     | 5       |
| TTT                     | 17PMA3C10  | Complex Analysis             | 6     | 5       |
|                         | 17PMA3C11  | Stochastic Process           | 6     | 4       |
|                         | 17PMA3E3A/ | Number Theory/               | 6     | Λ       |
|                         | 17PMA3E3B  | Calculus of Variations       | 0     | 7       |
|                         |            | Total                        | 30    | 23      |
|                         | 17PMA4C12  | Functional Analysis          | 6     | 5       |
| IV                      | 17PMA4C13  | Differential Equations       | 6     | 5       |
|                         | 17PMA4C14  | Operations Research          | 6     | 5       |
|                         | 17PMA4R01  | Project                      | 12    | 6       |
|                         | 17PMA4A01  | Comprehensive Examination    | -     | 2*      |
| Total                   |            |                              |       | 21      |
| Total for all semesters |            |                              |       | 90+2*   |

\* Extra Credit

No External Exam for Soft Skills

#### M.Sc. MATHEMATICS QUESTION PATTERN (EXTERNAL)

#### MAXIMUM: 60 MARKS

#### TIME: 3 HOURS

| PART A | 5 Questions to be answered<br>One Question from each unit                      | Each carries One<br>mark   | 5 × 1 = 5   |
|--------|--------------------------------------------------------------------------------|----------------------------|-------------|
| PART B | 5 Question to be answered<br>Either or type<br>One Question from each unit     | Each carries Five<br>marks | 5 × 5 = 25  |
| PART C | 3 Question to be answered out of<br>5 Questions<br>One Question from each unit | Each carries Ten<br>marks  | 3 × 10 = 30 |

#### **QUESTION PATTERN FOR IDC (EXTERNAL)**

#### **MAXIMUM: 60 MARKS**

#### TIME: 3 HOURS

| PART A | 10 Questions to be answered.<br>Two Questions from each unit.                    | Each carries One<br>mark   | 10 × 1 = 10 |
|--------|----------------------------------------------------------------------------------|----------------------------|-------------|
| PART B | 6 Question to be answered out of<br>10.<br>Two Questions from each unit.         | Each carries Five<br>marks | 6 ×5 = 30   |
| PART C | 2 Question to be answered out of<br>5 Questions.<br>One Question from each unit. | Each carries Ten<br>marks  | 2 × 10 = 20 |

#### **TESTING AND EVALUATION (PG)**

Evaluation of students is based on both Continuous Internal Assessment (CIA) and the Semester Examination (SE) held at the end of each Semester. The distribution of marks is indicated below

| Course  | Continuous Internal<br>Assessment | Semester<br>Examination |
|---------|-----------------------------------|-------------------------|
| Theory  | 40%                               | 60%                     |
| Project | 50%                               | 50%                     |

| Components | Marks |
|------------|-------|
| Test - I   | 30    |
| Test - II  | 30    |
| Seminar    | 10    |
| Term Paper | 05    |
| Attendance | 05    |
| Total      | 80    |

#### CONTINUOUS INTERNAL ASSESSMENT (THEORY)

The total internal marks obtained for 80 will be converted to 40.

### PROJECT WORK

The ratio of marks for Internal and External Examination is 50:50. The Internal Components of Project Work is

| Components                        | Marks |
|-----------------------------------|-------|
| First Review                      | 10    |
| Second Review                     | 10    |
| Final Review (Internal Viva Voce) | 30    |
| Total                             | 50    |

#### EXTERNAL VALUATION OF PROJECT WORK

| Components         | Marks |
|--------------------|-------|
| External Viva Voce |       |
| Internal Examiner  | 25    |
| External Examiner  | 25    |
| Total              | 50    |

#### ALGEBRA-I

## Semester: I Hou Code : 17PMA1C01 Cred

#### **COURSE OUTCOMES:**

- Understand the concept of counting principles.
- Apply class equation and Sylows theorem to solve different problems.
- Construct ideal rings from the fundamental concepts.
- Utilize the results of Euclidian Ring to Gaussian integer.
- Identify the reducible and irreducible polynomials.

#### UNIT I

Another Counting Principle - Cauchy theorem - Sylow's theorem-Second part of -Sylow's theorem-Third part of Sylow's theorem. (18 Hours)

#### UNIT II

Direct Products - External direct Product - Internal direct Product - Finite Abelian Groups - Every finite Abelian group is the direct product of cyclic groups.

#### (18 Hours)

#### UNIT III

Ideals and Quotient rings - More Ideals and Quotient rings - The Field of Quotients of an integral Domain. (18 Hours)

#### UNIT IV

Euclidean Rings - Definition-Principal Ideal Ring - Unique Factorization theorem -A Particular Euclidean Ring j[i] - Fermat theorem . (18 Hours)

#### UNIT V

Polynomial Rings - Division Algorithm - Polynomial Rings over the Rational Field -Gauss' Lemma - The Eisenstein Criterion - Polynomial Rings over Commutative Rings. (18 Hours)

#### **COURSE BOOK:**

I. N. Herstein, Topics in Algebra (2<sup>nd</sup> Edition) Replika Press Pvt. Ltd.2002

| Unit I   | : | Chapter 2 : sections 2.11, 2.12                     |  |
|----------|---|-----------------------------------------------------|--|
|          |   | (Theorem 2.12.1, Lemma 2.12.1 & 2.12.2 are omitted) |  |
| Unit II  | : | Chapter 2 : sections 2.13, 2.14                     |  |
| Unit III | : | Chapter 3 : sections 3.4, 3.5, 3.6                  |  |
| Unit IV  | : | Chapter 3 : sections 3.7, 3.8                       |  |
| Unit V   | : | Chapter 3 : sections 3.9 , 3.10 , 3.11              |  |

#### ANALYSIS - I

#### Semester: I

#### Code : 17PMA1C02

#### **COURSE OUTCOMES:**

- Acquire basic knowledge of metric spaces and Euclidean spaces.
- Build a foundation for Topology.
- Understand the concepts of limits of sequences, series and functions.
- Determine the continuity of functions.
- Operate the extended real number system in terms of neighborhoods.

#### UNIT I

Finite, countable and uncountable sets - Metric spaces - compact sets - Perfest sets - Connected sets. (18 Hours)

#### UNIT II

Numerical sequences and series - Convergent sequences - subsequences -Cauchy sequences - Upper and lower limits - Some special sequences - Series -Series of nonnegative terms. (18 Hours)

#### UNIT III

The number e - The root and ratio tests -Power series - Summation by parts - Absolute convergence - addition and multiplication of series - Rearrangements.

#### (18 Hours)

#### UNIT IV

Continuity - Limits of functions - Continuous functions - Continuity and compactness - Continuity and connectedness - Discontinuities - Monotonic functions - Infinite limits and limits at infinity. (18 Hours)

#### UNIT V

Differentiation - The derivatives of a real function - Mean value theorems - The continuity of derivatives - L' hospital's rule - Derivatives of higher order - Taylor's theorem - Differentiation of vector valued functions. (18 Hours)

#### COURSE BOOK:

Walter Rudin, Principles of Mathematical analysis(Third Edition), Mc Graw - Hill International Book Company, International Student Edition), 1984.

| Unit I   | : | chapter 2                      |
|----------|---|--------------------------------|
| Unit II  | : | chapter 3 section 3.1 to 3.29  |
| Unit III | : | chapter 3 section 3.30 to 3.55 |
| Unit IV  | : | chapter 4                      |
| Unit V   | : | chapter 5                      |

#### Hours: 6

#### **ADVANCED CALCULUS**

#### Semester: I

Code : 17PMA1C03

#### **COURSE OUTCOMES:**

- Develop analytic and numerical techniques for solving problems using fundamental theorem of integral calculus.
- Analyze the concepts of implicit functions theorems.
- Evaluate integrals over curves and surfaces.
- Explain the concept of differential forms
- Deduce Poisson's equation from inhomogeneous wave equation.

#### UNIT I

Integration -The definite integral -The lower and upper integral of f over R- Sets of zero area-Basic Existence theorem for definite integral-Evaluation of definite integrals-Fundamental theorem of integral calculus. (18 Hours)

#### UNIT II

Differentials of transformations - Local approximations - Differentiable at a point and on an open set - Mean value theorem-Inverses of transformations -Jacobian of T- The implicit functions theorems- Functional dependence. (18 Hours)

#### UNIT III

Transformations of multiple integrals - Curves and arc length - Direction cosines for the line - Rectifiable curve - Smoothly equivalent curves - Surfaces and surface area -Smooth surface - Normal to smooth surface - Area of smooth surface -Smoothly equivalent surfaces - Orientable manifold -Integrals over curves and surfaces. (18 Hours)

#### UNIT IV

Differential forms -Curve functional - Surface functional - Region functional - Line integrals 1-form& 2-form in the XY plane-3-form in the XYZ space - Addition and multiplication of forms-Differentiation for forms - Vector analysis -Inner product -The theorems of Green, Gauss and Stokes. (18 Hours)

#### UNIT V

Exact forms and closed forms - Simply connected set - Applications -Inhomogeneous wave equations-Poisson's equation - Laplace equation - Harmonic functions- Green's first and second identities. (18 Hours)

#### **COURSE BOOK:**

R. Creighton Buck, Advanced calculus (THIRD EDITION), McGraw Hill Kogakusha (International Student Edition), 1978.

| Unit I   | : | Chapter 4 - Sections | 4.2 & 4.3           |
|----------|---|----------------------|---------------------|
| Unit II  | : | Chapter 7 - Sections | 7.4,7.5,7.6&7.7     |
| Unit III | : | Chapter 8 - Sections | 8.3, 8.4, 8.5 & 8.6 |
| Unit IV  | : | Chapter 9 - Sections | 9.2 , 9.3 & 9.4     |
| Unit V   | : | Chapter 9 - Sections | 9.5 & 9.6           |

#### **CLASSICAL MECHANICS**

#### Semester: I

#### Code : 17PMA1C04

#### **COURSE OUTCOMES:**

- Understand the elementary principles and Formulate the Lagrangian.
- Derive Lagrangian equations from Hamilton's principle.
- Extend Hamilton's principle to nonholonomic system.
- Reduce two body problem to one body problem.
- Describe planar and spatial motion of rigid body.

#### UNIT I

Survey of the elementary principles - Mechanics of a particle, mechanics of a system of particles - Constraints - D' Alembert's Principle and Lagrange's Equations - Velocity - dependent potentials and the dissipation function - Simple applications of the Lagrangian formulation. (18 Hours)

#### UNIT II

Variational principles and Lagrange's Equation - Hamilton's principle - Some techniques of the calculus of variations - Derivation of Lagrangian's equations from Hamilton's Principle. (18 Hours)

#### UNIT III

Extension of Hamilton's principle to non holonomic systems - Advantages of variational priniciple formulation - Conservation theorems and symmetry properties. (18 Hours)

#### UNIT IV

The two body central force problem - Reduction to the equivalent one body problem- The equations of motion and first integrals - The equivalent one dimensional problem and classification of orbits- The virial theorem - The differential equation for the orbit and integrable power-law potentials -Conditions for closed orbits (Bertrand's theorem). (18 Hours)

#### UNIT V

The Kelper problem - Inverse square law of force - The motion in time in the

Kepler problem - The Laplace - Runge - Lenz vector. (18 Hours)

#### **COURSE BOOK:**

Herbert Goldstein, Classical Mechanics (Second Edition), Narosa Publishing House, 2001.

| Unit | Ι   | : | Chapter 1                      |
|------|-----|---|--------------------------------|
| Unit | II  | : | Chapter 2 Sections 2.1-2.3     |
| Unit | III | : | Chapter 2: Sections 2.4-2.6    |
| Unit | IV  | : | Chapter 3 : Sections 3.1-3.6.  |
| Unit | V   | : | Chapter 3 : Sections 3.7 - 3.9 |

#### NUMERICAL ANALYSIS

#### Semester: I

#### Code : 17PMA1E1A

#### **COURSE OUTCOMES:**

- Perform an error analysis for various numerical methods.
- Apply numerical methods to obtain approximate solutions to nonlinear equations.
- Determine the intermediate values in tabulated data using interpolation.
- Develop appropriate numerical methods to solve differential equations.
- Evaluate differentials and integrals using different formulae.

#### UNIT I

Transcendental and polynomial equations - Introduction -Bisection method -Iteration methods based on first degree equation - methods based on second degree equation- Rate of Convergence - Iteration Methods - Methods for Complex roots - Polynomial Equations. (18 Hours)

#### UNIT II

Interpolation and Approximation - Introduction - Lagrange and Newton Interpolations - Finite difference operators - Interpolating polynomials using Finite Differences - Hermite Interpolations . (18 Hours)

#### UNIT III

Numerical Differentiation - Introduction - Numerical Differentiation - Extrapolation methods - partial differentiation. (18 Hours)

#### UNIT IV

Numerical Integration - Methods Based on Interpolation - Composite IntegrationMethods - Romberg Integration - Double Integration.(18 Hours)

#### UNIT V

Ordinary Differential Equations - Introduction - Numerical Methods - Single step Methods. (18 Hours)

#### **COURSE BOOK:**

M.K. Jain, S.R.K. Iyengar & R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Pvt. Ltd., Publishers, Third Edition, 1996.

| Unit | Ι   | : | Chapter 2 Sections 2.1 to 2.8                |
|------|-----|---|----------------------------------------------|
| Unit | II  | : | Chapter 4 Sections 4.1 to 4.5                |
| Unit | III | : | Chapter 5 Sections 5.1 to 5.5                |
| Unit | IV  | : | Chapter 5 Sections 5.6, 5.7, 5.9, 5.10, 5.11 |
| Unit | V   | : | Chapter 6 Sections 6.1 to 6.3                |

#### **OPTIMIZATION THEORY**

#### Semester: I

#### Code : 17PMA1E1B

#### **COURSE OUTCOMES:**

- Acquire knowledge of Fibonacci method for optimization.
- Understand constrained optimization techniques through linear and nonlinear programming.
- Describe the algorithms and solution analysis.
- Solve optimization problems.
- Compare the abstract properties of various optimization techniques.

#### UNIT I

One Dimensional Optimization : Introduction - Function Comparision Methods -Polynomial Interpolation Methods - Iterative Methods - Function Comparison Methods : Two Point Equal Interval Search - Method of Bisection - Fibonacci Method - Golden Section Search - Polynomial Interpolation - Quadratic Interpolation - Cubic Interpolation -Iterative Methods: Newton's Method-Secant Method. (18 Hours)

#### UNIT II

Unconstrained Gradient Based Optimization Methods : Introduction - Gradient and Conjugate Gradient Type Algorithms - Method of Steepest Descent -Conjucate Gradient Method - Newton Type Methods : Newton's Method -Marquardts's Method - Quasi Newton Methods : Quasi-Newton Algorithms.

#### (18 Hours)

#### UNIT III

Linear Programming : Introduction - Simplex Method -Case studyEquipmentBags - Movement from one extreme point to another - Simplex Algorithm - CaseStudy Revisited- Revised Simplex Method.(18 Hours)

#### UNIT IV

Finding Initial Solution - Two Phase Simplex Method - Duality- Duality Theory -Dual Simplex Method.(18 Hours)

#### UNIT V

Constrained Optimization Methods: Introduction - Lagrange Multipliers - Kuhn-Tucker Conditions - Convex Optimization - Transformation Methods: Penalty Function Techniques - Method of Multipliers. - Linearization Methods: Linearly Constrained Problems - Cutting Plane Method. (18 Hours)

12

Hours: 6

#### **COURSE BOOK:**

Mohan C Joshi & Kannan M Moudgalya, Optimization Theory and Practice, Narosa Publishing House, Chennai, 2004.

**Unit I** : Chapter 2 : Sections 2.1.1-2.1.3, 2.2.2 - 2.2.5 & 2.3.2-2.3.3.

**Unit II** : Chapter 3 : Sections 3.1,3.2.2 - 3.2.3, 3.3.2 - 3.3.3 & 3.4.2

**Unit III** : Chapter 4 : Sections 4.1 & 4.2.1 - 4.2.5

**Unit IV** : Chapter 4 : Sections 4.3.2 & 4.4.2 - 4.4.3.

**Unit V** : Chapter 5 : Sections 5.1 & 5.1.1 - 5.1.3, 5.2.2 - 5.2.3, & 5.3.2 - 5.3.3.

#### ALGEBRA - II

#### Semester: II

#### Code : 17PMA2C05

#### **COURSE OUTCOMES:**

- Understand Module as a generalization of Vector Space.
- Construct the abelian groups generated by finite number of elements.
- Differentiate between linearly independent vectors and linearly dependent vectors.
- Find the matrices corresponding to linear transforms.
- Reduce the matrix to rational triangular form and canonical form.

#### UNIT I

Vector spaces - Elementary Basic Concepts - Subspaces -Homomorphism -Isomorphism - Internal direct Sum - Linear Independence - Linear Span - Finite Dimensional vector space - linearly independent vectors - Basis of V - Dual spaces. (18 Hours)

#### UNIT II

Inner Product Spaces -Norm of a vector-Orthogonal vectors-Orthogonal complement -Orthonormal Set-Modules-Cyclic modules and Finitely Generated modules. (18 Hours)

#### UNIT III

Linear transformations - The Algebra of Linear Transformations - Algebra over a field F-Invertible or Regular Transformation - Singular Transformation -Characteristic Roots - Matrices-Algebra of Matrices-Canonical Forms : Triangular Form. (18 Hours)

#### UNIT IV

Canonical Forms : Nilpotent Transformations - A decomposition of V : Jordan Form - Jordan Canonical Form - Rational Canonical Form - Trace and Transpose.

#### (18 Hours)

#### UNIT V

Determinants - The formal Properties in the theory of Determinants - Cramer's Rule for solving the system of linear Equations - Hermitian, Unitary, and Normal Transformations - Real Quadratic Forms. (18 Hours)

#### COURSE BOOK:

I. N. Herstein, Topics in Algebra (Second Edition), Replica Press Pvt. Ltd, 2002

| Unit I   | : | Chapter 4: Sections 4.1 - 4.3   |
|----------|---|---------------------------------|
| Unit II  | : | Chapter 4 : Section 4.4 - 4.5 . |
| Unit III | : | Chapter 6 : Sections 6.1 - 6.4. |
| Unit IV  | : | Chapter 6 : Sections 6.5 - 6.8. |
| Unit V   | : | Chapter 6: Sections 6.9 - 6.11. |

#### ANALYSIS - II

#### Semester: II

#### Code : 17PMA2C06

#### **COURSE OUTCOMES:**

- Compare the convergence and uniform convergence of sequence of functions
- Extend the structure of the real line to complex and vector valued functions on intervals
- Derive the properties of analytic functions
- Discuss integration of real valued functions on intervals
- Develop the Lebesque integral in several distinct ways

#### UNIT I

The Riemmann -Stieltjes integral - Definition and existence of the integral - properties of the integral - integration and differentiation. (18 Hours)

#### UNIT II

Sequences of series of functions - Discussion of Main Problem - uniform convergence - uniform convergence and continuity - uniform convergence and integration-uniform convergence and differentiation. (18 Hours)

#### UNIT III

Equicontinuous families of functions - The Stone Wierstrass theorem -Some Special Functions- power series - the exponential and logarithmic functions - The trigonometric functions. (18 Hours)

#### UNIT IV

The algebraic completeness of the complex field - Fourier series-The Gamma function - some consequences - Stirling's formula. (18 Hours)

#### UNIT V

The Lebesgue theory- set functions - construction of the Lebesgue Measure measure spaces - measurable functions - simple functions - integrationcomparison with the Riemann integral - integration of complex functionsfunctions of class  $L^2$ . (18 Hours)

#### **COURSE BOOK:**

Walter Rudin, Principles of Mathematical Analysis(Third edition), McGraw-Hill International Company (International Student Edition),1976

| Unit I   | : | Chapter 6 - 6.1 to 6.22                           |
|----------|---|---------------------------------------------------|
| Unit II  | : | Chapter 7 - 7.1 to 7.18                           |
| Unit III | : | Chapter 7 - 7.19 to 7.33 & Chapter 8 - 8.1 to 8.7 |
| Unit IV  | : | Chapter 8 - 8.8 to 8.22                           |
| Unit V   | : | Chapter 11                                        |

#### MATHEMATICAL STATISTICS

#### Semester: II

Code : 17PMA2C07

#### **COURSE OUTCOMES:**

- Explore the essentials of Distribution theory
- Construct the theory of probability to make inferences
- Promote knowledge of special distributions
- Build effective methods of finding the distribution of a function of several random variables
- Provide ways of approximation to determine complicated probability density functions

#### UNIT I

Distributions of Random Variables - the probability set function - random variables - the probability density function - the distribution function - certain probability models - mathematical expectation - some special mathematical expectations -Chebyshev's inequality. (18 Hours)

#### UNIT II

Conditional Probability and Stochastic Independence - Conditional Probability -Marginal and conditional distributions - the correlation coefficient - Stochastic independence. (18 Hours)

#### UNIT III

Some Special Distributions-The Binomial, Trinomial and multinomial Distributions-The Poisson distribution - The Gamma and Chi-square Distributions - The Normal Distribution - The Bivariate Normal Distribution. (18 Hours)

#### UNIT IV

Sampling Theory - Transformations of variables of the discrete type -Transformations of variables of the continuous type - The t and F distributions -Extensions of the change of variable technique - Distributions of order statistics - The moment generating function technique - The distributions of  $\overline{X}$  and  $nS^2/\sigma^2$  - Expectations of functions of random variables. (18 Hours)

#### UNIT V

Limiting distributions - Stochastic convergence - Limiting Moment generating functions - The Central Limit Theorem - Some theorems on Limiting distributions.

(18 Hours)

#### Hours: 6

Credits: 4

#### COURSE BOOK:

Robert V. Hogg & Allen T. Craig, Introduction to Mathematical Statistics, IV Edition, Macmillan Publishing Co., Inc. NEW YORK, Collier Macmillan Publishers, 1978.

| Unit I   | :   | Chapter 1 : Sections 1.4 to 1.11 |
|----------|-----|----------------------------------|
| Unit II  | :   | Chapter 2 : Sections 2.1 to 2.4  |
| Unit III | : : | Chapter 3 : Sections 3.1 to 3.5  |
| Unit IV  | :   | Chapter 4 : Sections 4.1 to 4.9  |
| Unit V   | :   | Chapter 5 : Sections 5.1 to 5.5  |

#### DIFFERENTIAL GEOMETRY

#### Semester: I

#### Code : 17PMA2E2A

#### **COURSE OUTCOMES:**

- Understand the basic principles of space curves and surfaces.
- Familiarize with the concept of osculating circles and spheres and their properties.
- Derive differential equations of Geodesics using normal property.
- Discuss the principal curvature and lines of curvature.
- Describe the local intrinsic property of a surface.

#### UNIT I

Theory of space curves - Representation of space curves - Unique parametric representation of a space curve - Arc length - Tangent and osculating plane - principal normal and binormal - curvature and torsion - Behaviour of a curve near one of its points - The curvature and torsion of a curve as the intersection of two surfaces - contact between curves and surfaces. (18 Hours)

#### UNIT II

Osculating circle and osculating sphere - Locus of centres of spherical curvature - Tangent surfaces , involutes and evolutes - Bertrand curves -Spherical indicatrix - Intrinsic equations of space curves -Fundamental Existence theorem for space curves - Helices. (18 Hours)

#### UNIT III

The first fundamental form and local intrinsic properties of a surface - Definition of a surface- Nature of points on a surface - Representation of a surface - curves on a surface -Tangent plane and surface normal -The general surface of revolution - Helicoids - metric on a surface -The first fundamental form -Direction coefficients on a surface - Families of curve -Orthogonal trajectories -Double family of curves. (18 Hours)

#### UNIT IV

Geodesics on a surface - Geodesics and their differential equations - Canonical geodesic equations - Geodesics on surfaces of revolution - Normal property of Geodesics -Differential equations of geodesics using normal property -Existence theorems - geodesics parallels - geodesics polar co-ordinates geodesics curvature. (18 Hours)

#### UNIT V

The Second fundamental form and local non intrinsic properties of a surface -Second fundamental form - Classification of points on a surface - principal curvature-lines of curvature - Dupin indicatrix. (18 Hours)

18

Hours: 6

Credits: 4

#### COURSE BOOK:

D. SomaSundaram , Differential Geometry A First Course, Narosa Publishing House, 2008

| Unit I   | : | Chapter 1 : Sections 1.1 - 1.10. |
|----------|---|----------------------------------|
| Unit II  | : | Chapter 1 : Sections 1.11 -1.20  |
| Unit III | : | Chapter 2 : Sections 2.1 - 2.13  |
| Unit IV  | : | Chapter 3 : Sections 3.1 - 3.10  |
| Unit V   | : | Chapter 4 : Sections 4.1 - 4.6   |

#### **GRAPH THEORY**

#### Semester: II

Code : 17PMA2E2B

#### **COURSE OUTCOMES:**

- Understand the techniques in Graph Theory.
- Represent real life problems in a graph.
- Develop the skill of constructing models using graphs.
- Discover solutions to problems using algorithmic approach.
- Inculcate the spirit of research in network problems.

#### UNIT I

Trees and Connectivity - Definitions and simple properties - bridges - Spanning trees - Connector problems - Shortest path problems - Cut vertices and connectivity. (18 Hours)

#### UNIT II

Euler Tours and Hamiltonian Cycles - Euler Tours - The Chinese postman Problem - Hamiltonian Graphs - The Travelling Salesman Problem. (18 Hours)

#### UNIT III

Matchings - Matchings and Augmenting paths - The Marriage Problem - The Personnel Assignment Problem. (18 Hours)

#### UNIT IV

Planar Graphs - Plane and Planar Graphs - Euler's Formula - The Platonic Bodies -Kuratowski's theorem - Non-Hamiltonian Plane Graphs - The Dual of a plane Graph. (18 Hours)

#### UNIT V

Colouring - Vertex Colouring - Vertex Colouring Algorithms - Critical Graphs -Cliques - Edge colouring - Map colouring. (18 Hours)

#### **COURSE BOOK:**

John Clark & Derek Allan Holton, A First Look At Graph Theory, Allied Publishers Ltd., 1995

| Unit I   | : | Chapter 2                       |
|----------|---|---------------------------------|
| Unit II  | : | Chapter 3                       |
| Unit III | : | Chapter 4 - Sections 4.1 to 4.3 |
| Unit IV  | : | Chapter 5                       |
| Unit V   | : | Chapter 6                       |

Hours: 6

#### MATHEMATICAL MODELLING

#### Semester: II

#### Code : 17PMA2I01

#### **COURSE OUTCOMES:**

- ✤ Acquaint with more mathematical techniques.
- Design the learning gained from special case studies to other situations.
- Apply mathematical modeling through graphs.
- Create models through differential equations to solve real life problems.
- Formulate Bio medical problems.

#### UNIT I

Mathematical Modelling: Need , Techniques , Classifications and simple illustrations - Simple situations requiring Mathematical modeling - The techniques of Mathematical modelling - Classification of a Mathematical model - Simple Illustrations - Limitations of Mathematical modelling. (12 Hours)

#### UNIT II

Mathematical Modelling through Graphs - Situations that can be modeled through graphs - The seven bridge problem - Senior- subordinate relationship - Food Webs - Decanting Problem - Seating arrangement Problem. (12 Hours)

#### UNIT III

Mathematical Modelling through Graphs (continued) -Shortest Path problem -The instant Insanity problem - uses of Graphs in Markov processes - Transition Graph. (12 Hours)

#### UNIT IV

Mathematical Modelling through Programming - Mathematical representation of a linear programming problem - Diet problem - Relocation of Emergency unit -Equipment Bags problem - Making money with matrices. (12 Hours)

#### UNIT V

Mathematical Models in Biology and medicine - Scope of Mathematical Bio Sciences - Role of mathematics in Bio Sciences - Genetic Matrices - Medical Diagnosis problem - The Hospital Diet problem -Optimization Model for Blood testing & patient care (Dorfman Procedure). (12 Hours)

#### **COURSE BOOK:**

Course Material prepared by the Department.

21

#### SOFT SKILLS

#### Semester: II

#### Code : 17PG\$2\$01

#### **COURSE OUTCOMES:**

- Develop their social, interpersonal, cognitive, ethical, professional, reading and communication skills.
- Increase their self-esteem and confidence.
- Achieve their short and long term goals.
- Prepare and formulate their resumes wisely.
- Face the mock group discussions and interviews with a challenge and choose their right career.

#### **UNIT I: SOFT SKILLS**

Introduction - Soft skills - Importance of soft skills - Selling your soft skills - Attributes regarded as soft skills - Soft skills - Social - Soft skills - Thinking - Soft skills - Negotiating - Exhibiting your soft skills - Identifying your soft skills - Improving your soft skills - will formal training enhance your soft skills - Soft Skills training - Train yourself - Top 60 soft skills - Practicing soft skills - Measuring attitude. (6 Hours)

#### **UNIT II: CAREER PLANNING**

Benefits of career planning - Guidelines for choosing a career - Myths about choosing a career - Tips for successful career planning - Developing career goals - Final thoughts on career planning - Things one should know while starting career and during his/her career. (6 Hours)

#### UNIT III: ART OF LISTENING AND SPEAKING

Two ears, one mouth - Active listening - Kinds of Listening, Common - poor listening habits - Advantages of listening - Listening Tips. Special features of Communication - Process - Channels of Communication - Net Work - Barriers -Tips for effective communication and Powerful presentation - Art of public speaking - Public Speaking tips - Over coming fear of public speaking. **(6 Hours)** 

#### UNIT IV: ART OF READING AND WRITING

Good readers - Benefits - Types - Tips - The SQ3R Technique - Different stages of reading - Rates of Reading - Determining a student's reading rate - Increasing reading rate - Problems with reading - Effective reader - Importance of writing -Creative writing - Writing tips - Drawbacks of written communication. **(6 Hours)** 

#### **UNIT V: PREPARING CV / RESUME**

Meaning - Difference among Bio-data, CV and Resume - The terms - The purpose of CV writing - Types of resumes - Interesting facts about resume - CV writing tips - CV/Resume preparation - the dos - CV/Resume preparation - the don'ts -Resume check up - Design of a CV - Entry level resume - The content of the resume - Electronic resume tips - References - Power words - Common resume blunders - Key skills that can be mentioned in the resume - Cover letters - Cover letter tips. (6 Hours)

#### **COURSE BOOK:**

Dr. K. Alex, Soft Skills, Chand & Company Pvt. Ltd., New Delhi.

#### **REFERENCE BOOK:**

| 1. | Dr. T. Jeya Sudha & Mr. M.R. Wajida Begum | : | Soft Skills/Communication Skills, New |
|----|-------------------------------------------|---|---------------------------------------|
|    |                                           |   | Century Book House (P) Ltd., Chennai. |
| 2. | S. Hariharen, N. Sundararajan &           | : | Soft Skills, MJP Publishers, Chennai. |

S.P. Shanmuga Priya

#### SOFT SKILLS

Hours: 2 Credit: 1

#### Semester: II

Code : 17PGS2S01

#### **QUESTION PATTERN**

| Part - A | 3 Questions to be<br>answered out of 5 | Each Carries 4 marks | 12 Marks |
|----------|----------------------------------------|----------------------|----------|
| Part - B | 2 Questions to be<br>answered out of 4 | Each Carries 9 marks | 18 Marks |

The Components of Internal Assessment for Soft Skill are as follows

| Components          | Marks |
|---------------------|-------|
| Test - I            | 30    |
| Test - II           | 30    |
| Mock Interview      | 30    |
| Communication Skill | 10    |
| Total               | 100   |

#### FIELD THEORY AND LATTICES

#### Semester: III

#### Code : 17PMA3C08

#### **COURSE OUTCOMES:**

- Familiarize with the concept of field extensions.
- Elucidate the normal extensions and identify the fixed fields of Galois groups.
- Analyse the concept of finite fields.
- Explain clearly about Lattices and types of lattices.
- Acquaint with the properties of lattices and Boolean Algebra.

#### UNIT I

Extension Fields - finite extensions - algebraic extensions - algebraic and transcendental elements - the transcendence of e - roots of polynomials.

(18 Hours)

#### UNIT II

More about roots - the elements of Galois theory - normal extensions - fixed fields - Galois groups. (18 Hours)

#### UNIT III

Solvability by radicals - finite fields. (18 Hours)

#### UNIT IV

Lattices - partially ordered sets - lattices - modular lattices- Schreier's theorem.

(18 Hours)

#### UNIT V

Decomposition theory for lattices with ascending chain condition - independence

- complemented lattices - Boolean algebras. (18 Hours)

#### **COURSE BOOKS:**

- 1. I.N. Herstein, Topics in Algebra, John Wiley & Sons, Second Edition, 2002.
- 2. Nathan Jacobson, Lectures in Abstract Algebra, Affiliated East-West Press Pvt. Ltd., 1971.

Unit I : Chapter - 5: Sections 5.1, 5.2 & 5.3 (Book 1)
Unit II : Chapter - 5: Sections 5.5 & 5.6 (Book 1)
Unit III : Chapter - 5: Section 5.7 & Chapter - 7: Section 7.1(Book 1)
Unit IV : Chapter - 7: Sections 7.1 to 7.4 (Book 2)
Unit V : Chapter - 7: Sections 7.5 to 7.8 (Book 2)

#### Hours: 6

#### TOPOLOGY

#### Semester: III

#### Code : 17PMA3C09

#### **COURSE OUTCOMES:**

- Understand the basic topological concepts.
- Extend the notion of continuous functions in topological spaces.
- Explain compactness and connectedness of topological spaces.
- Familiarize with the separation axioms.
- Use the properties of normal and regular spaces in proving theorems.

#### UNIT I

Topological spaces - basis for a topology - order topology - product topology on

 $X \times Y$  - subspace topology - closed sets and limit points. (18 Hours)

#### UNIT II

Continuous functions - product topology - metric topology - the metric topology continued. (18 Hours)

#### UNIT III

Connected spaces - connected subspaces of the real line - components and local connectedness. (18 Hours)

#### UNIT IV

Compact spaces - compact subspaces of the real line - limit point compactness.

#### (18 Hours)

#### UNIT V

The countability axioms - separation axioms - normal spaces - Urysohn lemma -Urysohn Metrization theorem - Tietze Extension theorem -Tychonoff theorem.

#### (18 Hours)

#### **COURSE BOOK:**

James. R. Munkres, Topology, PHI Learning Private Ltd., New Delhi, Second Edition, 2014.

Unit I : Chapter - 2: Sections 12 to 17

Unit II: Chapter - 2: Sections 18 to 21

(omitting section 22 - The Quotient Topology)

Unit III: Chapter - 3: Sections 23 to 25

- Unit IV: Chapter 3: Sections 26 to 28 (omitting section 29 - Local Compactness)
- Unit V: Chapter 4: Sections 30 to 35 (omitting section 36 - Imbedding of Manifolds) & Chapter - 5: Section 37

#### COMPLEX ANALYSIS

#### Semester: III

#### Code :17PMA3C10

#### **COURSE OUTCOMES:**

- Represent complex numbers algebraically and geometrically.
- Determine the differentiability of complex functions.
- Identify the removable and essential singularities of a function.
- Express analytic functions in terms of power series.
- Evaluate complex line integrals and some infinite real integrals.

#### UNIT I

The spherical representation - limits and continuity - analytic functions polynomials - rational functions - sequences - series - uniform convergence power series - Abel's limit theorem. (18 Hours)

#### UNIT II

Arcs and closed curves - analytic functions in region - conformal mapping - length and area - linear group - cross ratio - symmetry. (18 Hours)

#### UNIT III

Line integrals - rectifiable arcs - line integrals as functions of arcs - Cauchy's theorem for a rectangle - Cauchy's theorem in disk - Cauchy's integral formula -The index of a point with respect to a closed curve - the integral formula - higher derivatives. (18 Hours)

#### UNIT IV

Removable singularities - Taylor's theorem - zeros and poles - the local mapping -The maximum principle - The residue theorem - The argument principle evaluation of definite integrals. (18 Hours)

#### UNIT V

Harmonic functions - definition and basic properties - the mean value property -Poisson's formula - Schwarz's theorem - Weierstrass's theorem - The Taylor's series - The Laurent's series. (18 Hours)

#### **COURSE BOOK:**

Lars V. Ahlfors, Complex Analysis, Mc Graw Hill Student Edition, Third Edition, 1979.

Unit I: Chapter - 1: Section 2.4 & Chapter - 2: Sections 1.1 to 2.5 Unit II : Chapter - 3 : Sections 2.1 to 2.4 & 3.1 to 3.3 Unit III: Chapter - 4 : Sections 1.1 to 1.5 & 2.1 to 2.3 Unit IV: Chapter - 4 : Sections 3.1 to 3.4 & 5.1 to 5.3 Unit V: Chapter - 4: Sections 6.1 to 6.4 & Chapter - 5: Sections 1.1 to 1.3

#### **STOCHASTIC PROCESS**

#### Semester: III

#### Code : 17PMA3C11

#### **COURSE OUTCOMES:**

- Provide Mathematical models for random experiments
- Familiar with important tools of Applied Probability theory
- Develop ideas on the application of Markov chains and Markov process
- Benefit with more details on Renewal Process
- Solve various mathematical problems using limiting behavior

#### UNIT I

Random Variables and Stochastic Processes - Introduction - Probability Generating Function - Stochastic Process: An introduction - Markov chain -Definition and examples - Higher transition probabilities. (18 Hours)

#### UNIT II

Generalisation of independent Bernoulli trails: Sequence of chain - Dependent trails - Classification of states and chains - Determination of higher transition probabilities - Stability of a Markov system - Graph theoretic approach.

#### (18 Hours)

#### UNIT III

Poisson Process - Poisson process and Related Distributions - Generalisations of Poisson process - Birth and Death Process - Markov process with discrete state space. (18 Hours)

#### UNIT IV

Renewal Process - Renewal process in Discrete time - Renewal process in continuous time - Renewal equation. (18 Hours)

#### UNIT V

Stopping time: Wald's equation - Elementary Renewal theorems - Renewaltheorems - Delayed and equilibrium renewal process.(18 Hours)

#### **COURSE BOOK:**

**J. Medhi, Stochastic Process**, New Age International Publishers, Third Edition, 2009.

UNIT I : Chapter - 1 & Chapter - 2 : Sections 1.1.1, 1.1.2, 1.5, 2.1, 2.2

UNIT II: Chapter - 2: Sections 2.3 to 2.7

UNIT III: Chapter - 3: Sections 3.1 to 3.5

UNIT IV: Chapter - 6 : Sections 6.1 to 6.3

UNIT V: Chapter - 6: Sections 6.4 to 6.6

#### NUMBER THEORY

#### Semester: III

#### Code : 17PMA3E3A

#### **COURSE OUTCOMES:**

- Explain the concepts of arthimetic functions and Dirichlet multiplication.
- Determine multiplicative inverse, modulo n to solve linear congruences.
- Produce rigorous arguments of number theory and promote in writing proofs of theorems.
- Evaluate the law of quadratic reciprocity and quadratic residues.
- Assess with partition functions.

#### UNIT I: ARITHMETICAL FUNCTIONS AND DIRICHLET MULTIPLICATION

The Mobius function - Euler totient function - a relation connecting  $\phi$  and  $\mu$  - a product formula for  $\phi(n)$  - the Dirichlet product of arithmetic functions - Dirichlet inverses and the Mobius inversion formula - the Mangoldt function - Multiplicative function - multiplicative functions and Dirichlet Multiplication - The inverse of a completely multiplicative function - Liouville's function - The divisor functions - Generalised convolutions - Formal Power series - The Bell series of an arithmetical function - Bell Series and Dirichlet multiplication - derivatives of arithmetical functions - The Selberg identity. (18 Hours)

#### **UNIT II: AVERAGES OF ARITHMETICAL FUNCTIONS**

The big oh notation - asymptotic equality of functions - Euler's summation formula-Some elementary asymptotic formulas - average order of d(n) - average order of the divisor functions  $\sigma_{\alpha}(n)$  - average order of  $\phi(n)$  - an application to the distribution of lattice points visible from the origin - average order of  $\mu(n)$  and of  $\Delta(n)$  - the partial sums of a Dirichlet product - applications to  $\mu(n)$  and  $\Lambda(n)$  another identity for the partial sums of a Dirichlet product. (18 Hours)

#### **UNIT III: CONGRUENCES**

Definition and basic properties of Congruences - Residue classes and complete residue system - Linear congruences - reduced residue systems and the Euler - Fermat theorem - polynomial congruences modulo p - Langrange's theorem - applications of Lagrange's theorem - Simultaneous Linear Congruences: The Chinese remainder theorem - applications of the Chinese remainder theorem - Polynomial congruences with prime power moduli - the principle of cross classification - a decomposition property of reduced residue systems. (18 Hours)

28

Hours: 6

#### Credits: 4

#### UNIT IV: QUADRATIC RESIDUES AND QUADRATIC RECIPROCITY LAW

Quadratic residues - Legendre's symbol and its properties - evaluation of (-1/p) and (2/p) - Gauss' Lemma - the quadratic reciprocity Law - applications of the reciprocity law - the Jacobi symbol - Applications to Diophantine equations.

#### (18 Hours)

#### **UNIT V: PARTITION FUNCTION**

Partitions - graphs - Formal power series and Euler's identity - Euler's formula,Jacobi's formula - a divisibility property.(18 Hours)

#### **COURSE BOOKS:**

- 1. Tom M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition, 1998.
- 2. Niven Herbert S. Zuckerman, Introduction to the Theory of Numbers, Wiley Eastern University Edition, 1984.

| Unit I   | : | Chapter 2 Section 2.2 - 2.19 (Book 1) |
|----------|---|---------------------------------------|
| Unit II  | : | Chapter 3 Section 3.2 - 3.12 (Book 1) |
| Unit III | : | Chapter 5 Section 5.1 - 5.11 (Book 1) |
| Unit IV  | : | Chapter 9 Section 9.1- 9.8 (Book 1)   |
| Unit V   | : | Chapter 10 Section 10.1-10.6 (Book 2) |

#### **CALCULUS OF VARIATIONS**

#### Semester: III

Code : 17PMA3E3B

#### **COURSE OUTCOMES:**

- Apply the concept of variation to solve problems on Mechanics.
- Analyze movable boundary for a functional dependent on two functions.
- Describe special kinds of Kernals and Fredholm alternatives.
- Familiar with successive approximation.
- Synthesize initial value problem and boundary value problem.

#### UNIT I

The concept of Variation and its properties - Euler's equation - Variational properties for functional - Functionals dependent on higher order derivatives - Functions of several independent variables - Some applications to problems of mechanics. (18 Hours)

#### UNIT II

Movable boundary for a functional dependent on two functions - One sided variations - Reflection and Refraction of extremals - Diffraction of light rays.

#### (18 Hours)

#### UNIT III

Introduction - Definition - Regularity conditions - Special kinds of Kernals - Eigen values and eigen functions - Convolution integral - Reduction to a system of algebraic equations - Examples - Fredholm alternative - Examples - An approximation method. (18 Hours)

#### UNIT IV

Method od successive approximations - Iterative scheme - Examples - Volterra integral equations - Examples - Some results about the resolvent kernel - The method of solution of Fredholm equation - Fredholm first theorem - Examples.

#### (18 Hours)

#### UNIT V

Initial value problems - Boundary value problem - Examples - Singular integral equations - The Abel integral equations - Examples. (18 hours)

30

Credits: 4

#### **COURSE BOOK:**

- 1. A. S. Gupta, Calculus of Variations with Applications, PHI, New Delhi, 2005. (units I & II)
- 2. Ram P. Kanwal, Linear Integral Equations, Theory and Techniques, Academic

Press, New York, 1971. (units III, IV & V)

Unit I : Chapter - 1 : Sections 1.1 - 1.7

- Unit II : Chapter 2 : Sections 2.1 2.5
- Unit III : Chapter 1 : Sections 1.1 1.5

Chapter - 2 : Sections 2.1 - 2.5

Unit IV : Chapter - 3 : Sections 3.1 - 3.5

Chapter - 4 : Sections 4.1 - 4.3

Unit V : Chapter - 5 : Sections 5.1 - 5.3

Chapter - 8 : Sections 8.1 - 8.2

#### **FUNCTIONAL ANALYSIS**

#### Semester: IV

#### Code : 17PMA4C12

#### **COURSE OUTCOMES:**

- Illustrate the elementary concepts of Functional analysis.
- Convert a linearly independent set into an orthonormal set.
- Apply the ideas from the theory of Hilbert spaces to Fourier series.
- Describe the various kinds of operators.
- Apply the spectral theory to the resolution of integral equations

#### UNIT I

Banach spaces - definition and some examples - continuous linear transformation -The Hahn- Banach theorem - the natural imbedding on N in N\*\* - the open mapping theorem - the conjugate of an operator. (18 Hours)

#### UNIT II

Hilbert spaces - definition and some simple properties - orthogonal complements - orthonormal sets - the conjugate space H<sup>\*</sup>. (18 Hours)

#### UNIT III

The adjoint of an operator - self-adjoint operators - normal and unitary operators - projections. (18 Hours)

#### UNIT IV

Matrices - determinants and the spectrum of an operator - the spectral theorem - a survey of the situation. (18 Hours)

#### UNIT V

General preliminaries on Banach algebras - definition and examples - regular and singular elements - topological divisors of zero - the spectrum - the formula for the spectral radius - the radical and semi simplicity. (18 Hours)

#### **COURSE BOOK:**

**George. F. Simmons, Introduction to Topology and Modern Analysis**, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, Edition 2004.

UNIT I : Chapter - 9: Sections 46 - 51
UNIT II : Chapter - 10: Sections 52 - 55
UNIT III : Chapter - 10: Sections 56 - 59
UNIT IV : Chapter - 11: Sections 60 - 63
UNIT V : Chapter - 12: Sections 64 - 69

32

Credits: 5

#### **DIFFERENTIAL EQUATIONS**

#### Semester: IV

#### Code : 17PMA4C13

#### **COURSE OUTCOMES:**

- Get acquaint with the ordinary and partial differential equations.
- Acquire the knowledge of finding the approximate solutions of the differential equations.
- Understand the existence and uniqueness property of solutions of first and higher order differential equations.
- Solve the partial differential equations using different methods.
- Infer the initial and boundary value problems and the methods to solve them.

#### UNIT I

Solutions in power series - introduction - second order linear equations with ordinary points - Legendre equation and Legendre polynomial. Hermite polynomial - second order equations with regular singular points - Bessel equation. (18 Hours)

#### UNIT II

Existence and uniqueness of solutions - introduction - preliminaries - successive approximations - Picard's theorem - non uniqueness of solutions - continuation and dependence on initial conditions - existence of solutions in the large existence and uniqueness of solutions of systems. (18 Hours)

#### UNIT III

Boundary value problems - Sturm-Liouville problem - Green's functions - non existence of solutions - Picard's theorem. (18 Hours)

#### UNIT IV

Cauchy's method of characteristics - compatible systems of first order equations -Charpit's method. (18 Hours)

#### UNIT V

Linear partial differential equations with constant coefficients - equations with variable coefficients. (18 Hours)

#### **COURSE BOOKS:**

- 1. S. G. Deo and V. Raghavendra, Ordinary Differential Equations and Stability Theory, Tata McGraw-Hill Publishing Company Ltd., 1987.
- **2. Ian Sneddon, Elements of Partial Differential Equations**, McGraw-Hill International Student Edition, 1982.

 Unit I
 : Chapter - 3: Sections 3.1 - 3.5 (Book 1)

 Unit II
 : Chapter - 5: Sections 5.1 - 5.8 (Book 1)

 Unit III
 : Chapter - 7: Sections 7.1 - 7.5 (Book 1)

 Unit IV
 : Chapter - 2: Sections 8 - 10(Book 2)

 Unit V
 : Chapter - 3: Sections 4 - 5 (Book 2)

#### **OPERATIONS RESEARCH**

#### Semester: IV

#### Code : 17PMA4C14

#### **COURSE OUTCOMES:**

- Formulate network models and solve using algorithms.
- Convert and solve the practical situation into non linear programming problems.
- Compute critical path in network problems.
- Apply and extend queuing models to analyze real life problems.
- Solve nonlinear programming problems.

#### UNIT I

Network models - scope of network applications - network definitions - minimal spanning tree algorithm - shortest route problem - short route algorithms - maximal flow model - maximal flow algorithm. (18 Hours)

#### UNIT II

Network models (continued) - minimum cost capacitated flow problem - linear programming formulation - capacitated network simplex algorithm - CPM and PERT - network representation - critical path computations - construction of the time schedule - determination of the floats. (18 Hours)

#### UNIT III

Queuing systems - why study queues? - elements of queueing model - role of exponential distribution - derivation of exponential distribution - pure birth and death models - generalised Poisson queueing model - specialized Poisson queues steady-state measures of performance - single server models (M/M/1):  $(GD/\infty/\infty)$  - waiting time distribution for (M/M/1): $(FCFS/\infty /\infty)$  - (M/M/1):  $(GD/N/\infty)$  - multiple server models - (M/M/c):  $(GD/\infty/\infty)$ , (M/M/c):  $(GD/N/\infty)$  - self service model  $(M/M/\infty)$ : $(GD/\infty/\infty)$  - self service model - machine serving model (M/M/R): (GD/K/K) (R<K).

#### UNIT IV

Classical optimization theory - introduction - unconstrained problems - necessary and sufficient conditions - Newton - Raphson method - constrained problems equality constraints - Jacobian method - Lagrangean method - inequality constraints - extension of the Lagrangian method - the Kuhn-Tucker conditions.

#### (18 Hours)

#### UNIT V

Non linear programming algorithms - unconstrained algorithms - direct search method - gradient method - constrained algorithms - separable programming quardratic programming - geometric programming - stochastic programming linear combination method. (18 Hours)

#### **COURSE BOOK:**

Hamdy. A. Taha, Operations Research - An Introduction, Prentice Hall of India Private Ltd., New Delhi, (VI Edition) (2000).

| Unit I   | : Chapter - 6 : Sections 6.1 - 6.5                       |
|----------|----------------------------------------------------------|
| Unit II  | : Chapter - 6 : Sections 6.6 - 6.7                       |
| Unit III | : Chapter - 17: Sections 17.1 - 17.6 (up to 17.6.4 only) |
| Unit IV  | : Chapter - 20: Sections 20.1- 20.3                      |
| Unit V   | : Chapter - 21: Sections 21.1 - 21.2 (up to 21.2.5 only) |

#### PROJECT

| Semester: IV |                                              | Hours:  |
|--------------|----------------------------------------------|---------|
| Code         | : 17PMA4R01                                  | Credits |
| COURS        | E OUTCOMES:                                  |         |
| *            | Cultivate abstract thinking.                 |         |
| *            | Acquire knowledge in their area of interest. |         |
| *            | Develop confidence in self learning.         |         |
| *            | Gain experience in deductive reasoning.      |         |

Promote techniques of research.

#### **COMPREHENSIVE EXAMINATION**

#### Semester: IV

Code : 17PMA4A01

#### **COURSE OUTCOMES:**

- Promote competency in Mathematics.
- ❖ Contemplate with important tools to solve problems in Pure and Applied Mathematics.
- Improve self learning.
- Have an understanding on the use of mathematical concepts.
- Equip themselves to appear for NET/SET Exams.

Credits: 2

12

5:6