JAYARAJ ANNAPACKIAM COLLEGE FOR WOMEN (AUTONOMOUS)

 \bigstar

 \bigstar

 \bigstar

 \bigstar

 \bigstar

 \checkmark

 \bigstar

 \bigstar

 \bigstar

 \bigstar

 \bigstar

 \bigstar

A Unit of the Sisters of St. Anne of Tiruchirappalli Accredited with 'A⁺' Grade (Cycle 4) by NAAC **DST FIST Supported College** Affiliated to Mother Teresa Women's University, Kodaikanal

PERIYAKULAM – 625 601, THENI DT. TAMIL NADU.

SYLLABUS 2020 - 2023

M. SC. PHYSICS

PG AND RESEARCH CENTRE OF PHYSICS

P.G. PROGRAMME OUTCOMES

PO.	UPON COMPLETION OF THIS PROGRAMME THE STUDENTS
NO.	WILL BE ABLE TO
1.	Endow with in-depth knowledge, analyze and apply the understanding of their discipline for the betterment of self and society.
2.	Synthesize ideas from various disciplines, enhance the interdisciplinary knowledge and extend it for research.
3.	Gain confidence and skills to communicate orally/verbally in research platforms and state a clear research finding.
4.	Develop problem solving and computational skills and gain confidence to appear the competitive examination.
5.	Enhance knowledge regarding research by accumulating practical knowledge in specific areas of research.
6.	Achieve idealistic goals and enrich the values to tackle the societal challenges.

P.G. PROGRAMME SPECIFIC OUTCOMES

PSO.	UPON COMPLETION OF THIS PROGRAM THE	РО
NO.	STUDENTS WILLBE ABLE TO	MAPPED
1.	Apply the principles, phenomena and mechanisms involved in physics to evaluate and interpret effectively	PO-1
2.	Apply appropriate resources and available modern technology	PO-1
	in the multidisciplinary context.	PO-2
3.	Develop critical thinking and problem solving skills to pursue	
	scientific research and carry out independent project, present	PO-3
	and publish their findings.	PO-4
4.	Design, apply and analyze the knowledge of physics through experiments.	PO-5
5.	Equip themselves to prepare and appear for qualifying/competitive examinations	PO-6

PG COURSE PATTERN (2020 - 2023) (UGC/ TANSCHE/ MTU)

Sem.	Code	Title of the Course	Hours	Credit
	20PPH1C01	Classical Mechanics and Nonlinear Dynamics	6	5
	20PPH1C02	Mathematical Physics - I	6	5
	20PPH1C03	Thermodynamics and StatisticalPhysics	6	5
Ι	20PPH 1P01	Practical - I	6	4
	20PPH1E1A/	Analog and Digital Electronics /		
	20PPH1E1B/	Applied Physics/	6	4
	20PPH1E1C	Analytical Instrumentation		
		Total	30	23
	20PPH2C04	Mathematical Physics - II	6	6
	20PPH2C05	Solid State Physics - I	6	5
	20PPH2P02	Practical - II	6	4
	20PPH2E2A/	Electrodynamics and Plasma Physics /		
II	20PPH2E2B/	Crystal growth and Thin film Characterization/	6	4
	20PPH2E2C	Magnetic materials and their applications		
	20PPH2GE1	IDC: Nano Materials and their Applications	4	3
	20PSE2S01	Soft Skills	2	1
		Total	30	23
	20PPH3C06	Quantum Mechanics - I	6	6
	20PPH3C07	Solid State Physics - II	6	5
	20PPH3P03	Practical - III	6	4
	20PPH3E3A/	Numerical Methods and MATLAB/		
III	20PPH3E3B/	Nano materials /	6	4
	20PPH3E3C	Physics for Biological studies		
	20PPH3GE2	IDC: BiomedicalInstrumentation	4	3
	20PSE3H02	Human Rights & Duties	2	1
	20PPH3IN1	Internship	-	2*
		Total	30	23+2*
	20PPH4C08	Quantum Mechanics - II	6	6
	20PPH4C09	Nuclear and Particle Physics	6	5
	20PPH4C10	Molecular Spectroscopy	6	4
IV	20PPH4R01	Project	12	6
	20PPH4SM1	MOOC'S	-	1*
	20PPH4S01	Comprehensive Examination	-	2*
		Total	30	21+3*
	1	Total for All Semesters	120	90 + 5

Internship for atleast 10 days after II semester i.e. during the Semester Holidays -Extra Credits

CONTINUOUS INTERNAL ASSESSMENT COMPONENT (CIA)

THEORY:

Component	Marks	Marks
Internal Test I	40	
Internal Test II	40	Converted to 25
Seminar	10	Converted to 25
Term Paper	5	
Attendance	5	
Total	100	25

CONTINUOUS INTERNAL ASSESSMENT COMPONENT (CIA)

Practical: 40 Marks

PASSING MINIMUM

Semester Examination					
Theory 50% out of 75 Marks					
(i.e. 37.5 Marks)					
Practical 50% out of 60 Marks					
	(i.e. 30 Marks)				

PROJECT WORK

The ratio of marks for Internal and External Examination is 50:50.

THE INTERNAL COMPONENTS OF PROJECT

Components	Marks
First Review	10
Second Review	10
Final Review (Internal Viva Voce)	30
Total	50

EXTERNAL VALUATION OF PROJECT WORK

Components	Marks
Project	25
External Viva Voce	25
Total	50

INTERNAL COMPONENTS FOR THE INTERNSHIP

Components	Percentage %
I - Review from industrialist	50
II - Review from internal guide	50
& Report Submission	
Total	100

INTERNAL QUESTION PATTERN

(Maximum Marks-40)

PART - A

10 Questions × 1Mark = 10 Marks

PART - B

2 Questions × 5 Marks = 10 Marks

(Internal Choice and One Question from Each Unit)

PART - C

2 Questions × 10 Marks = 20 Marks

(Open Choice, Two Questions out of Three)

EXTERNAL QUESTION PATTERN

(Maximum Marks-75)

PART - A

10 Questions × 1Mark = 10 Marks

(Two Questions from each Unit)

PART - B

5 Questions × 5 Marks = 25 Marks

(Internal Choice and one set of Question from each Unit)

PART - C

5 Questions × 8 Marks = 40 Marks

(Open Choice Five Questions out of Seven

Atleast One Question from each Unit)

CLASSICAL MECHANICS AND NONLINEAR DYNAMICS

Semester:I

Code : 20PPH1C01

Hours: 6

Credits: 5

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Describe the motion of a system using Lagrangian and Hamiltonian formalisms.	PSO-1, PSO-2	K, C, An, E
CO - 2	Demonstrate the conceptual understanding of variational principle and canonical transformations.	PSO-2, PSO-3	К, С, Ар
CO - 3	Explain the intricacies of moving frames and rigid body dynamics.	PSO-1, PSO-3, PSO-5	K, C, An
CO - 4	Analyze and distinguish the behavior of linear and non-linear dynamical systems.	PSO-1, PSO-3, PSO-5	K, C, An, E
CO - 5	Identify various types of bifurcations in 1D and 2D systems and construct bifurcation diagrams and Interpret the conditions for the occurrence of chaos.	PSO-1, PSO-2, PSO-5	K, An, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I Code : 20PPH1C01					CLAS	SSIC	AL M	ECH	ANIC	S AN	D	Hours: 6
					NONLINEAR DYNAMICS						Credits: 5	
Course (I			amme (P		come	S	F	rogra: Outc	mme S omes (-	C	Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	4	3	5	3	2	5	4	3	2	4	3.64
CO2	5	3	4	5	3	2	4	5	3	2	4	3.64
CO3	5	5	4	5	2	3	4	4	5	3	3	3.91
CO4	5	3	4	4	3	2	4	5	5	3	4	3.82
CO5	5	4	4	4	3	2	5	4	5	3	3	3.82
	Overall Mean Score						3.77					

Result: The Score for this Course is 3.77 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: LAGRANGIAN AND HAMILTONIAN DYNAMICS

Constraints - Generalized co-ordinates - Principle of Virtual Work -D'Alembert's principle - Lagrange's equations from D'Alembert's principle -Procedure - Lagrange's equation in presence of non-conservative forces -Generalized potential - Hamilton's principle and Lagrange's equations. Generalized momentum & Cyclic co-ordinates - Conservation theorems -Hamiltonian function - Hamilton's equations - Examples - Routhian. (18 Hours)

UNIT II: VARIATIONAL PRINCIPLE ANDCANONICAL TANSFORMATIONS

Calculus of variations and Euler-Lagrange's equations - Deduction of Hamilton's principle from D'Alembert's principle - Modified Hamilton's principle - Hamilton's equations from modified Hamilton's principle - Lagrange's equations from variational principle for non-conservative systems - Lagrange's method of undetermined multipliers - Physical significance - Examples - Δ variation - Principle of least action. Canonical & Legendre transformations - Generating functions - Procedure - Conditions - Bilinear invariant condition. Poisson's & Lagrange's brackets - Relation between them - Angular momentum - Invariance - Phase space - Liouville's theorem. (18 Hours)

UNIT III: SMALL OSCILLATIONS AND RIGID BODY DYNAMICS

Potential energy and equilibrium - 1D oscillator - Two coupled oscillators -Normal coordinates and normal modes - Examples. General theory of small oscillations - Secular and eigenvalue equation - Linear tri-atomic molecule. Generalized co-ordinates of a rigid body - Reference systems - Euler's angles - Angular velocity - Angular momentum and Inertial Tensor- Principal moments of inertia - Rotational Kinetic energy - Symmetric bodies - Euler's equations. (18 Hours)

UNIT IV: LINEAR AND NONLINEAR SYSTEMS

Dynamical systems - Nonlinearity - Mathematical implications, Working definition, Effects - Linear and Nonlinear oscillators - Free, damped, forced -Primary and Secondary resonances - Jump phenomenon - Autonomous and Nonautonomous systems - Phase trajectories - Equilibrium points - Stability, Classification. (18 Hours)

UNIT V: BIFURCATIONS AND CHAOS

Simple bifurcations - Saddle Node - Pitchfork - Transcritical - Hopf - Discrete Dynamical Systems - Logistic map - Equilibrium points and their stability -Periodic solutions or cycles - Period doubling phenomenon - Onset of chaos -Bifurcation diagram - Cobweb diagrams. (18 Hours)

BOOKS FOR STUDY

- Classical Mechanics J. C. Upadhyaya Himalaya Publishing House, Mumbai, 2003.
- Nonlinear Dynamics Integrability, Chaos and Patterns M. Lakshmanan & S. Rajasekhar - Springer (India) Private Limited, New Delhi, 2003.

DETAILED REFERENCE

1. Classical Mechanics - J. C. Upadhyaya - Himalaya Publishing House, Mumbai, 2003.

UNIT - I: Chapter - 2: 2.1 to 2.11, Chapter - 3: All sections

UNIT - II: Chapter - 5: 5.1 to 5.11, Chapter - 6: 6.1 to 6.6, Chapter - 7: All sections

UNIT - III: Chapter - 9: 9.1 to 9.6, Chapter - 10: 10.1 to 10.11

 Nonlinear Dynamics - Integrability, Chaos and Patterns - M. Lakshmanan & S. Rajasekhar - Springer (India) Private Limited, New Delhi, 2003.

UNIT - IV: Chapter - 1: All sections, Chapter - 2: 2.1, 2.2, Chapter - 3: 3.1 to 3.4

UNIT - V: Chapter - 4: 4.1, 4.2

BOOKS FOR REFERENCE

- 1. Classical Mechanics H. Goldstein Narosa Publications, New Delhi, 1984.
- 2. Classical Mechanics N. C. Rana & P. S. Joag Tata Mcgraw Hill Publications, New Delhi, 1999.
- 3. Nonlinear Oscillations & Chaos M. Daniel Narosa Publications, New Delhi, 2002.
- 4. Thermodynamics, Kinetic Theory and Statistical Thermodynamics- Sears and Salinger-Narosa Publishing House, New Delhi, 1998.

MATHEMATICAL PHYSICS-I

Semester: I

Code : 20PPH1C02 COURSE OUTCOMES:

Hours:	6
Credits:	5

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Explain and apply vector analysis in various applications.	PSO- 1, PSO- 2, PSO-5	К, С, Ар, Е
CO - 2	Compare and analyze various theorems of complex analysis.	PSO-2, PSO- 3, PSO- 5	K, C, An, E
CO - 3	Use matrix theory in the determination of Eigen values and vectors and apply them in polynomials.	PSO- 1, PSO-3, PSO- 5	C, Ap, E
CO - 4	Formulate physical laws in terms of Tensors and simplify them using coordinate transformations,	PSO- 1, PSO- 2, PSO- 5	K, C, An
CO - 5	Expand a function in Fourier series and relate to integral transforms.	PSO- 1, PSO- 2, PSO- 5	C, Ap, An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I		л	/T 75 1711	текл			IVCIC	10 T	Hours: 6			
Code : 20PPH1C02					IN		THEMATICAL PHYSICS-I				Credits: 5	
Course Program				e Outo O)	come	S	F	-	mme S omes (-	C	Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	4	3	4	3	3	5	5	4	4	3	3.90
CO2	5	4	3	4	3	2	4	5	4	3	3	3.72
CO3	5	4	3	4	3	2	5	5	4	3	3	3.81
CO4	5	4	3	4	3	2	4	5	5	2	3	3.72
CO5	5	4	3	4	3	2	5	5	4	2	3	3.72
			Ċ)vera	11 Me	an Sc	ore					3.77

Result: The Score for this Course is 3.77 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for $Cos = Total of Mean Scores$
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: VECTOR ANALYSIS

Differential Vector Operators: Gradient- Divergence- Curl- Circular Cylinder Coordinates - Area law of planetary motion- Navier-Stokes Term- Spherical Polar Coordinates- ∇ , ∇ , ∇ , ∇X for a central force- Magnetic Vector Potential. (18 Hours)

UNIT II: COMPLEX ANALYSIS

Complex Algebra- Permanance of the Algebraic form- Complex Conjugation - Function of a ComplexVariable- De Moivre's formula- Cauchy Riemann conditions- Analytic Functions- Cauchy's Integral Theorem- Contour Integrals- Stoke's Theorem Proof- Cauchy- Goursat Proof- Multiply Connected Regions- Cauchy's Integral Formula - Derivatives- Morera's Theorem- Laurent Expansion- Taylor's Expansion- Schwarz Reflection Principle- Analytic Continuation- Laurent Series- Singularities- Poles-Branch Points. (18 Hours)

UNIT III: MATRIX THEORY

Determination of eigen values-Eigen vectors and their properties-Diagonalization of matrix - Eigen vectors of commuting matrices- Differential equation to eigen value problem- Cayley Hamilton theorem - Minimal polynomial - Condition for diagonalizability - Diagonalization of normal matrices- Matrix polynomial. (18 Hours)

UNIT IV: TENSORS

Occurrence of tensors in physics- Notation and conventions - Contravariant vectors- Tensors of second rank- Equality and null tensor- Addition and substraction - Outerproduct of tensors - Inner product of tensors - Contraction of a tensors- Symmetric and anti-symmetric tensors- The kronecker delta - The metric tensor- Contravariant metric tensor - Associate tensor. (18 Hours)

UNIT V: INTEGRAL TRANSFORMS

Fourier transform- Few properties of Fourier transform (shifting property, convolution property, parseval's theorem)- Fourier transform of derivatives - Development of the inverse Fourier transform - Laplace transforms- Properties of Laplace transforms- Laplace transform of derivatives- Inverse Laplace transform - Properties of Inverse Laplace transform. (18 Hours)

BOOKS FOR STUDY:

- 1. Mathematical methods for Physicists, G.B. Arfken & H.J.Weber ELSEVIER, A division of Reed Elsevier India Pvt. Ltd, VI 2004
- 2. Matrices and tensors in Physics, A.W. Joshi New age International Publishers Revised III Edition, 2002.
- 3. Mathematical Physics with Classical mechanics by Satya Prakash Sultan chand and Sons, Fourth Revised and enlarged edition 2002.

DETAILED REFERENCE:

- Mathematical methods for Physicists, G.B. Arfken & H.J.Weber ELSEVIER, A division of Reed Elsevier India Pvt. Ltd, VI 2004
 UNIT I : Chaper 2: 2.2-2.5
 UNIT II: Chapter 6: 6.1-6.6.
- 2. Matrices and Tensors in Physics, A.W. Joshi. New age International publishers Revised III Edition, 2002.

UNIT III: Chaper 9: 9.1-9.4, Chapter 10: all sections

UNIT IV: Chapter 15: 15.1-15.5, Chapter 16: 16.1-16.7, Chapter 18: 18.1-18.3

 Physics with classical mechanics by Satya Prakash - Sultan chand and Sons, Fourth Revised and enlarged edition 2002
 UNIT V: Chapter 9.1-9.4, 9.9-9.11, 9.15, 9.17

BOOKS FORREFERENCE:

- 1. The Mathematics of Physics and chemistry by Margenau & Murphy.
- 2. Fourier Transforms in Physics-D.C. Champeney wiley Eastern Ltd. July 1988.
- 3. Applied Mathematics for engineers and Physicists by Louis. A. Pipes and Lawrence R. Harvill III edn. McGraw Hill International.

THERMODYNAMICS AND STATISTICAL PHYSICS

Semester:I

Code : 20PPH1C03

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Describe fundamental laws of thermodynamics and distribution functions for classical and quantum statistics.	PSO-1, PSO- 3, PSO-4, PSO-5	K, C, An
CO - 2	Analyze various forms of ensembles.	PSO-1, PSO-5	C, An, E
CO - 3	Describe the relation between various kinds of phase transitions.	PSO-1, PSO-4	K, C, An, E
CO - 4	Explain the occurrence of irreversible processes and transport theory in gases.	PSO-1, PSO-4. PSO-5	C, An
CO - 5	Deduce the equations governing fluctuations in thermodynamics.	PSO-1, PSO- 3	K, C, An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I		TH	ERIV	IODY	ZNAN	IICS /	AND		Hours: 6			
Code : 20PPH1C03					S	Credits: 5						
Course (PC									C	Mean Score of		
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	3	4	3	2	2	5	5	4	3	3	3.54
CO2	5	4	4	3	3	2	4	5	5	2	2	4.09
CO3	5	3	4	3	2	2	4	4	4	5	2	3.45
CO4	5	4	4	3	3	2	3	4	4	4	3	3.54
CO5 5 4 4 3 2 2						2	4	5	4	3	3	3.54
			Ċ	Overa	ll Me	an Sc	ore					3.63

Result: The Score for this Course is 3.63 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 5

UNIT I: LAWS OF STATISTICS

Laws of thermodynamics - thermodynamic potentials and reciprocity relations - thermodynamic equilibrium - Nernst's heat theorem - Chemical potential. Identical particles and symmetry requirements - Bose-Einstein Statistics - Fermi-Dirac Statistics - Maxwell-Boltzmann Statistics - Evaluation of the constants α and β - Results of three statistics. (18 Hours)

UNIT II: METHOD OF ENSEMBLES

Microcanonical ensemble - Perfect gas in microcanonical ensemble - Gibbs paradox - Partition function and its correlation with thermodynamic quantities - Gibbs canonical ensemble - Thermodynamic functions for canonical ensemble - Partition function and their properties - Perfect monatomic gas in canonical ensemble - Grand canonical ensemble - Partition function and thermodynamic functions for grand canonical ensemble - Perfect gas in grand canonical ensemble-Comparison of ensembles. (18 Hours)

UNIT III: PHASE TRANSITION

Phase transition - Phase transitions of first and second kind - Critical exponent - Yang and Lee theory - The Ising model - Bragg-Williams approximation -One dimensional Ising model. Energy and Pressure of the gas - Gas degeneracy - Bose Einstein Condensation - Thermal properties of Bose Einstein gas - Liquid Helium. (18 Hours)

UNIT IV: TRANSPORT THEORY AND IRREVERSIBLE PROCESSES

Boltzmann transport equation - Lorentz solution - Chambers equation -Sommerfeld theory - Electrical and thermal conductivity - Magnetoresistance - Viscosity-Hall effect. Onsager relations - Proof - Applications. (18 Hours)

UNIT V: FLUCTUATIONS INTHERMODYNAMICS

Fluctuations in Energy, Pressure, Volume and Enthalpy - Probability -Brownian movement - Fokker Plank equation - Solution of Fokker Plank equation - Fourier analysis of random function - Wiener-Khintchine theorem -Electrical noise - Nyquist's theorem. (18 Hours)

BOOKS FORSTUDY

Statistical Mechanics - S. L. Gupta & V. Kumar - 27th edition - Pragati Prakashan, Meerut, 2014.

DETAILED REFERENCE:

Statistical Mechanics - S. L. Gupta & V. Kumar - 27th edition - Pragati Prakashan, Meerut, 2014.

UNIT I: Chapter - A: A-1 to A-7; Chapter - 6: 6.1 to 6.5 **UNIT II:** Chapter - 3: 3.0, 3.0-2 to 3.0-4; 3.1, 3.1-3 to 3.1-5; 3.2, 3.2-1 to 3.2-3

```
UNIT III: Chapter - 8: 8.0 to 8.4; Chapter - 13: 13.1 to 13.7
UNIT IV: Chapter - 10: 10.1 to 10.8; Chapter - 11: 11.0 to 11.2
UNIT V: Chapter - 12: 12.1 to 12.10
```

BOOKS FOR REFERENCE

- 1. Fundamentals of Statistical and Thermal Physics Fredrick Reif Tata McGraw Hill Publications, New Delhi, 1988.
- Statistical mechanics and properties of matter theory and applications E. S. R. Gopal - Halsted Press (Wiley-Interscience), New York, 1974.
- 3. Statistical Mechanics K. Huang John Wiley & Sons, New York, 1988.
- 4. Statistical Physics L. D. Landau & E. M. Lifshitz Pergamon Press, London, 1989.

PRACTICAL -I

Semester: I

Code : 20PPH1P01

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Apply the mathematical concepts/ equation to		
	obtain quantitative results and construct	PSO-1, PSO-2,	K, Ap, An, S,
	analog circuits.	PSO-4, PSO-5	Е
CO - 2	Analyze magnetic properties ofmaterials.	PSO-1, PSO-4	C, An, S, E
CO - 3	Apply the principles of optics to determine	PSO-1, PSO-2,	K, Ap, S, E
	the mechanical properties of materials.	PSO-4	
CO - 4	Construct electronic circuits for various	PSO-1, PSO- 3,	K, Ap, S, E
	applications.	PSO-4	
CO - 5	Work with analog and digital circuits.	PSO-2, PSO-4	Ap, An, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I						Б	ъπс	ͲͳϹͳ	т т			Hours: 6
Code : 20PPH1P01					PRACTICAL -I							Credits: 4
Course Outcomes				e Outo O)	itcomes Programme Specific Outcomes (PSO)			C	Mean Score of			
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO1	4	4	3	5	4	3	4	4	4	5	3	3.90
CO2	4	3	3	5	4	3	4	4	4	5	3	3.81
CO3	3	3	3	5	4	3	4	4	4	5	3	3.72
		I	C)vera	11 Me	an Sc	ore	1	1			3.81

Result: The Score for this Course is 3.81 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

LIST OFPRACTICALS:

- 1. Study of the Applications of IC 555 timer.
- Simplification of long Boolean expression using Karnaugh map by means of logic circuits.
- 3. Construction of Multiplexer and De-Multiplexer using IC 74 series.
- 4. Determination of Dielectric loss of a capacitor using CRO
- 5. Construction of Waveform generators using IC741.
- Solving the two different first order simultaneous equation using Op-Amp (Analog Computation).
- Determination of Elastic constants of a glass plate using Cornu's method by obtaining Elliptical fringes.
- 8. Determination of Elastic constants of a glass plate using Cornu's method by obtaining Hyperbolic fringes.
- Determination of Mutual Inductance of a pair coils at various angles using Anderson's bridge.

ANALOG AND DIGITAL ELECTRONICS

Semester: I

Code : 20PPH1E1A

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Enhance the capabilities of students through understanding of electronic devices.	PSO-1, PSO-3, PSO-5	K, C, An, E
CO - 2	Describe the principles of analog circuits.	PSO-1, PSO-3, PSO-5	K, C, An
CO - 3	Analyze the equivalent circuit and various configurations of Op Amp.	PSO-1, PSO-3, PSO-4, PSO-5	K, C, An
CO - 4	Analyze linear circuits and compute the parameters of Op Amps.	PSO-2, PSO-3, PSO-5	K, C, An, S, E
CO - 5	Describe the design and applications of various digital circuits.	PSO-2, PSO-3, PSO-4, PSO-5	C, Ap, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I Code : 20PPH1E1A			AN	IALO	Hours: 6 Credits: 4							
Course	F	Programme Outcomes (PO)						Programme Specific Outcomes (PSO)				Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	5	4	2	4	5	4	4	5	3	5	4.18
CO2	5	4	3	4	3	4	4	4	5	3	5	4,00
CO3	5	3	3	5	4	2	5	3	2	5	4	3.73
CO4	5	5	3	3	4	3	3	5	4	3	4	3.82
CO5	5	5	4	5	5	4	3	5	4	3	5	4.36
			C)vera	ll Me	an Sc	ore					4.01

Result: The Score for this Course is 4.01 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: SEMICONDUCTOR DEVICES AND POWER DEVICES

Fundamentals: Semiconductor Materials – Covalent Bonding and Intrinsic Materials – Extrinsic Materials- Semiconductor Diode- Zener diode, light emitting diodes (LED)- Schottky barrier diode - varactor diode - Tunnel diode and its working principle – Photodiodes - Photo-conductive cells - Solar cells- SCRsilicon controlled switch (SCS) - Unijunction transistor - Photo transistors.

(18 Hours)

UNIT II: BIPOLAR TRANSISTOR, FETS AND OSCILLATORS

Introduction – Transistor Construction – Transistor Operation – Common-Base Configuration – Transistor Amplifying Action – Common-Emitter Configuration – Common-collector configuration- Limits of Operation- **FET:** Construction and Characteristics of JFETs – Transfer Characteristics- Instrumentation- Depletion-Type MOSFET- Enhancement- Type MOSFET- MOSFET Handling- **Oscillators:** Oscillator Operation – Phase- Shift Oscillator- Wien Bridge Oscillator – Tuned Oscillator Circuit- Crystal Oscillator- Unijunction Oscillator. (18 Hours)

UNIT III: FUNDAMENTALS OF OPERATIONAL AMPLIFIERS

Interpreting a typical set of data sheets - The ideal Op-Amp - Equivalent circuit of an Op-Amp - Ideal voltage transfer curve - Open-loop Op-Amp configurations-Voltage-series feedback amplifier - Voltage-shunt feedback amplifier -Differential amplifiers - PSpice simulations. (18 Hours)

UNIT IV: OP-AMP PARAMETERS AND LINEAR CIRCUITS

Input offset voltage -Input bias current and Input offset current - Total output offset voltage - Thermal drift - Effect of variation in power supply voltages on offset voltage - Change in Input offset voltage and Input offset current with time -Frequency response - Compensating networks - Frequency response of internally compensated Op-amps - Frequency response of Noncompensated OP- amps. (18Hours)

UNIT V: DIGITAL CIRCUITS

Logic gates: De Morgan's law, Boolean laws and theorems- Karnaugh simplification – Multiplexer – Demultiplexer- Decoders- Magnitude comparators-Binary Addition and Subtraction-. Flip- flops: RS flip-flop- D flip-flop- JK flipflop, JK master-slave flip-flops.Types of Register – Universal Shift registers-Applications of Shift Registers – synchronous and asynchronous counters – registers – A/D and D/A conversion. (18 Hours)

BOOKS FOR STUDY:

- 1. Electronic Devices and Circuit Theory, R.L. Boylestad and L. Nashelsky –Ninth edition- Pearson Education, 2009.
- 2. Op-amp and Linear Integrated Circuits, Ramakant & A.Gayakwad -Fourth edition-PHI Learning Private Limited, New Delhi-110001.
- Digital Principles and Applications Donald P Leach, Albert Paul Malvino, Gautham Saha- Seventh Edition – Special Indian Edition- Tata Mc Graw- Hill Education, 2011.

DETAILED REFERENCES:

- 1. Electronic Devices and Circuit Theory, R.L. Boylestad and L. Nashelsky –Ninth edition- Pearson Education, 2009.
 - UNIT I: Chapter 1: 1.1-1.6, 1.15, 1.16 Chapter 16: 16.2,16.3, 16.5-16.7, 16.10 Chapter 17: 17.2, 17.7, 17.13, 17.14.
 - UNIT II: Chapter 3: 3.1-3.8 Chapter 6: 6.1-6.3, 6.5, 6.7-6.9 Chapter 14: 14.5-14.10
- Op-amp and Linear Integrated Circuits, Ramakant & A.Gayakwad -Fourth edition-PHI Learning Private Limited, New Delhi.
 UNIT III: Chapter-2: 2.1 - 2.6, Chapter-3: 3.3 - 3.6
 UNIT IV: Chapter- 4: 4.1 - 4.8, Chapter-5: 5.2 - 5.5
- Digital Principles and Applications Donald P Leach, Albert Paul Malvino, Gautham Saha- Seventh Edition – Special Indian Edition- Tata Mc Graw- Hill Education, 2011.
 - **UNIT V:** Chapter 2: 2.2, Chapter 3: 3.1-3.2, Chapter 4: 4.1-4.5,4.9 Chapter 6: 6.1- 6.2, Chapter 8: 81- 8.9, Chapter 9: 9.1, 9.6, 9.7 Chapter 10: 10.1-10.3, Chapter 12: 12.3-12.6

BOOKS FOR REFERENCE:

- Integrated Circuits & Semiconductor Devices G.J.Deboo & C.N.Burrous -Mc Graw Hill, Kogakusha Ltd, 1977.
- 2. Integrated Electronics Millman Halkias, Tata Mc Graw Hill Publishers, 1998.

APPLIED PHYSICS

Semester:I

Code : 20PPH1E1B

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Discuss ultrasonics and itsapplications.	PSO-1, PSO-3, PSO-5	К, С, Ар
CO - 2	Analyze the properties of materials and its related applications,	PSO-1, PSO-3, PSO-5	K, C, An
CO - 3	Describe the working of electromagnetic devices and their applications.	PSO-1, PSO-3, PSO-4, PSO-5	K, C, An
CO - 4	Compute the structure of the molecules applying group theory.	PSO-2, PSO-3, PSO-5	K, C, An, E
CO - 5	Analyze vibrations of molecules in different systems.	PSO-3, PSO-4, PSO-5	C, An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I Code : 20PPH1E1B					APPLIED PHYSICS							Hours: 6 Credits: 4
Course	Programme Outcomes (PO)					es Programme Specific Outcomes (PSO)					C	Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	4	4	3	4	4	4	4	3	4	4	3.90
CO2	4	4	3	4	5	5	4	4	3	3	3	3.82
CO3	4	5	4	4	3	3	4	4	3	3	4	3.73
CO4	4	4	4	5	4	4	3	4	4	4	4	4.00
CO5	4	4	4	4	4	5	4	4	3	3	4	3.90
	Overall Mean Score											3.87

Result: The Score for this Course is 3.87 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: ULTRASONICS

Ultrasonics as a means of communication - testing of material by ultrasonics dispersive and colloidal effects of ultrasonics - separation of mixtures by ultrasonic cutting and machinery of hand materials - Biological effects imaging method in medicine. (18 Hours)

UNIT II: ELECTRONIC DEVICES

Electro - optic effects - material properties related to get these effects - important ferroelectric, liquid crystal and polymeric materials for these devices. **(18 Hours)**

UNIT III: ELECTROMAGNETICDEVICES

Piezoelectric, electrostrictive and magnetostrictive effects, important material exhibiting these properties and their applications in sensors and actuator devices- Acoustic Delay lines, piezo electric devices - Surface acoustic wave devices. (18 Hours)

UNIT IV: GROUP THEORY

Symmetry elements and operations - point group - character tables - deduction of the number of normal modes vibrations of different symmetry types -Applications tomolecularstructure. (18 Hours)

UNIT V: NORMAL COORDINATEANALYSIS

Molecular vibrations - Types of force fields - Wilson's FG matrix method of evaluation potential constants-Applications to planner XY2 and XY3 systemsforce constants and group frequencies. (18 Hours)

BOOKS FOR STUDY:

- 1. Ultrasonics series I-VIII Optical electronics-W.Mason, Ajoy Ghatak &
- 2. K. Thyagarajan, Cambridge University Press, 1998
- 3. Molucular Vibrations Wilson, Decius & Cross

BOOKS FOR REFERENCE:

- 1. Fundamentals of Ultrasonics Blitz Ultrasonics Vighrous
- 2. Chemical Applications of Group Theory Willey inter science

ANALYTICAL INSTRUMENTATION

Semester: I

Code : 20PPH1E1C

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Discuss various Instrumental methods and techniques.	PSO-1, PSO-3	K, C, An
CO - 2	Describe advanced spectroscopic techniques.	PSO-3, PSO-4	C, Ap, An, E
CO - 3	Analyze the different systems for qualitative determination of elements.	PSO-2, PSO-3, PSO-4	K, An, S, E
CO - 4	Apply various analytical methods for analyzing elements.	PSO-1, PSO-3, PSO-4	C, Ap, E
CO - 5	Use numerous electrical devices to analyze organic compounds.	PSO-1, PSO-4, PSO-5	Ap, An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I Code : 20PPH1E1C			I	INAL	YTIC	CAL II	NSTRI	JMEN	TATI	ON	Hours: 6 Credits: 4	
Course]	Programme Outco (PO)					tcomes Programme Specific Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	4	3	4	2	4	5	3	4	3	2	3.55
CO2	4	5	4	4	5	5	4	3	5	5	3	4.27
CO3	4	5	4	4	3	3	3	4	5	5	3	3.91
CO4	4	4	3	5	4	4	5	3	4	5	2	3.91
CO5	4	4	3	4	3	5	5	4	3	5	4	4.00
			C)vera	ll Me	an Sc	ore					3.92

Result: The Score for this Course is 3.92 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Credits: 4

UNIT I: X-RAY, UV, IR AND RAMAN SPECTROSCOPY

Classification of instrumental methods – introduction to spectroscopy – properties of EMR – EM Spectrum – X-ray – Instrumentation for X-ray spectrometry- X-ray diffractometer- X-ray absorption- UV spectroscopy- Orgin and theory-Instrumentation – applications- Theory of IR – Instrumentation –Applications-Raman spectroscopy- Mechanism for Raman effect- Instrumentation – Applications. (18 Hours)

UNIT II: NMR, ESR AND EMISSION SPECTROSCOPY

Introduction to NMR – Quantum description of NMR – Instrumentation – Chemical shift – spin – spin coupling –applications- Theory of ESR – Instrumentation – Hyperfine splitting – determination of 'g' value – line width – theory of emission spectroscopy – instrumentation- applications. (18 Hours)

UNIT III: MASS AND ATOMIC ABSORPTION SPECTROSCOPY

Theory of mass spectrometer – components of mass spectrometer -applications– Principles of atomic Absorption Spectroscopy – Instrumentation – Single and Double beam Atomic Absorption Spectrometers. (18 Hours)

UNIT IV: THERMAL METHODS AND CHROMATOGRAPHY

Introduction to thermal methods analysis – thermo gravimeter – differential thermal analysis- Chromatography- Basic parts of chromatography- Methods of measurement – Liquid chromatography – Types- amino acid analyzer- Gas Chromatography. (18 Hours)

UNIT V: ELECTROMECHANICAL INSTRUMENTS

Electrochemical cell- Types of Electrodes- Conductivity meter- Polorography-Coulometers- Amperometers- Aqua meter- P^H measurement- Principle- P^H meters- Selective ion electrodes. (18 Hours)

BOOKS FOR STUDY:

- 1. H.H. Willard, L.L. Merit, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors, New Delhi, (1986).
- 2. R.S. Khandpur, Handbook of analytical instrumentation, Tata McGraw Hill Pvt Ltd., New Delhi, (2001).

DETAILED REFRENCE

1. H.H. Willard, L.L. Merit, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors, New Delhi, (1986).

UNIT I: Chapter 1-1.2, 1.4, Chapter 5- All sections, Chapter 6- All sections,

Chapter 7-7.1 to 7.7, Chapter 12: 12.1-12.6, Chapter 13- 13.1-13.4

UNIT II: Chapter 13-13.7, 13.8, Chapter 15: All sections

UNIT III: Chapter 10- All sections, Chapter 16- All sections

2. R.S. Khandpur, Handbook of analytical instrumentation, Tata McGraw Hill Pvt Ltd., New Delhi, (2001).

UNIT IV: Chapter 16- All sections, Chapter 17: 17.1, 17.2, 17.4 Chapter 18-18.1-18.3

UNIT V: Chapter 20- 20.1. 20.2. 20.8, 20.9, Chapter 21-21.1, 21.2, 21.4, 21.5

BOOKS FOR REFERENCES:

- 1. G.Chatwal, S.Anand, Instrumental Methods of Chemical Analysis, Himalaya Publications House, New Delhi, (1996).
- 2. Robert, D. Braun, Introduction to Instrumental analysis, McGraw Hill Book House, New Delhi, (1986).

MATHEMATICAL PHYSICS-II

Semester:II

Code : 20PPH2C04

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO – 1	Identify and discuss molecular symmetry and various properties of Group theory.	PSO-3, PSO-4, PSO-5	K, C, An, E
CO – 2	Formulate the character tables of groups and explain reducible, irreducible representations.	PSO-1,PSO-3, PSO-4, PSO-5	K, An, S, E
CO – 3	Solve the partial differential equations and apply them in different coordinate systems.	PSO-2, PSO-3, PSO-5	C, An, E
CO – 4	Derive special functions and the recurrence relations.	PSO-2, PSO-3, PSO-5	K, Ap, An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	Semester: II					гжтт		TICA	тъч	Veto	C TT	Hours: 6
Code : 20PPH2C04				1	14.	Credits: 5						
Course	Programme Outcor (PO)					itcomes Programme Specific Outcomes (PSO)					Mean Score of	
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	4	3	4	3	3	5	5	4	4	3	3.90
CO2	5	4	3	4	3	2	4	5	4	3	3	3.72
CO3	5	4	3	4	3	2	5	5	4	3	3	3.81
CO4	5	4	3	4	3	2	4	5	5	2	3	3.72
CO5	5	4	3	4	3	2	5	5	4	2	3	3.72
			C	Overa	ll Me	an Sc	ore			-		3.77

Result: The Score for this Course is 3.77 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 5

UNIT I: SYMMETRY OPERATIONS

Defining properties of a group - Some examples of groups - Subgroups -Classes-Molecular symmetry and the symmetry groups - Symmetry elements and operations - Symmetry planes and reflections - The inversion centre -Proper axes and proper rotations - Improper axes and improper rotations -Products of symmetry operations - Equivalent symmetry elements and equivalent atoms - General relations among symmetry elements and operations - Symmetry elements and optical isomerism - The symmetry point groups - Symmetries with multiple higher order axes - A systematic procedure for symmetry classification of molecules - Illustrative examples - classes of symmetry operations. (18 Hours)

UNIT II: GROUP THEORY

Representations of groups - "The Great Orthogonality Theorem" and its consequences - Five Important Rules- Illustration of Five Rules- Important Practical Relationship - Character tables - Character Table for D4-Representations for cyclic groups - Wave functions as bases for irreducible representation-The direct product. (18Hours)

UNIT III: DIFFERENTIAL EQUATIONS

Partial Differential Equations (PDE) - Examples of PDE's- Classes of PDE's and Charecteristics- Nonlinear PDE's- Boundary Conditions- First order Differential Equations - Separation of variables - Exact Differential Equations -Linear First Order ODE's- Singular points - Seperation of variables-Cartesinan Coordinates- Circular Cylindrical Coordinates- Spherical Polar Coordinates- Singluar Points- Series solutions - Frobenius method- Symmetry of Solutions- Limitations of Series Approach- Bessel's Equation-Regualr and Irregular Singularities- Fuchs' Theorem. (18 Hours)

UNIT IV: SPECIAL FUNCTIONS I

Bessel function- Bessel functions of the first kind - Recurrence relation- Bessel's Differential equation- Integral representation- Bessel function of Nonintegral Order- Orthogonality- Normalization- Bessel Series- Continuum Form- Modified Bessel Functions- Recurrence Relations- Spherical Bessel function - definitions-Limiting Values- recurrence Relations- Orthogonality. (18 Hours)

UNIT V: SPECIAL FUNCTIONS II

Legendre Function- Legendre Polynomials- Linear Electric Multipoles- Vector Expansion- Extension to Ultraspherical Polynomials- Recurrence relations and special properties- Differential Equations- Special Values- Parity- Upper and Lower Bounds - Orthogonality- Expansion of Functions, Legendre Series-Spherical Harmonics- Azimuthal Dependence - Orthogonally- Polar Angle Dependance- Spherical Harmonics- Laplace Series, Expansion Theorem-Hermite function- recurrence Relations- Alternate Representations-Orthogonality- quantum Mechanical Simple Harmonic Oscillator- Lauguerre functions- AssociatedLaguerre Polynomials. (18 Hours)

BOOKS FOR STUDY

- 1. Chemical Applications of group theory by F. Albert Cotton II Ed, Wiley Eastern Ltd.
- 2. Mathematical methods for physicists, G.B. Arfken & H.J.Weber ELSEVIER , A division of Reed Elsevier India Pvt. Ltd, VI 2004.

DETAILED REFERENCES:

1. Chemical Applications of group theory - F. Albert Cotton - II Ed. Wiley Eastern Ltd.

UNIT I & II: Chapters: 2, 3, 4 & 5, Secs: 2.1-2.4, 3.1-3.15, 4.2-4.5, 5.1, 5.2

2. Mathematical methods for physicists, G.B. Arfken & H.J. Weber ELSEVIER, A division of Reed Elsevier India Pvt. Ltd, VI 2004

UNIT III: Chapter 9: 9.1-9.5

UNIT IV: Chapter 11: 11.1-11.2, 11.5, 11.7.

UNIT V: Chapter 12: 12.1-12.3, 12.6, Chapter: 13: 13.1-13.2

BOOKS FOR REFERENCE:

- 1. Applied Mathematics for Engineers and Physicists- A.Pipes & R. Harvil-IIIedition-McGraw Hill international Book company- New Delhi.
- 2. Mathematical Physics with Classical mechanics by Satya Prakash Sultan chand and Sons, Fourth Revised and enlarged edition 2002
- 3. Elements of Group Theory for Physicists, A. W. Joshi, , III Edition, Wiley Eastern Limited, 1975.

SOLID STATE PHYSICS-I

Semester: II

Code : 20PPH2C05 COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Classify the crystals and analyze the diffraction of crystals in reciprocal lattice space.	PSO-1, PSO-5	K, C, An
CO - 2	Analyze the nature of binding forces and mechanical forces in crystals.	PSO-1, PSO-5	K, C, An,
CO - 3	Analyze the thermal vibrations of crystals and compute various parameters related to it.	PSO-2, PSO-3, PSO-5	K, C, An, E
CO - 4	Compute the energy bands with different methodologies.	PSO-2, PSO-3, PSO-4, PSO-5	К, С, Ар, Е
CO - 5	Differentiate semiconductors and compute carrier concentrations and energy bands.	PSO-2, PSO-3, PSO-4, PSO-5	K, C,An, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I		50		CULX	те рі	JVCT	~с т		Hours: 6			
Code : 20PPH2C05					SOLID STATE PHYSICS-I							Credits: 5
Course Programme (PC							Programme Specific Outcomes (PSO)				Mean Score of	
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	5	5	3	3	3	5	4	4	3	3	3.0
CO2	5	5	5	3	4	3	5	5	4	3	3	3.18
CO3	5	5	5	3	4	4	5	5	3	3	3	3.18
CO4	5	5	5	4	4	3	4	5	5	3	2	3.18
CO5	5	5	3	4	4	4	5	5	3	3	3.27	
			C)vera	ll Me	an Sc	ore					3.16

Result: The Score for this Course is 3.16 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: CRYSTAL STRUCTURE & RECIPROCAL LATTICE

Classification of solids - Periodicity in Crystalline solids - Lattice translational vectors -Unit and Primitive cells - Bravais lattices - Symmetry operations -Crystal indexing -Miller Indices - direction in crystals - Atomic Packing factor - Density and lattice constant - Common crystal structure - Diffraction of wave by crystals - scattered wave amplitude -Brillouin Zones - Fourier analysis of the Basis - Quasi crystals. (18 Hours)

UNIT II: CRYSTAL BINDING AND ELASTIC CONSTANTS

Crystals of inert gases - ionic crystals - covalent crystals - metals - hydrogen bonds atomic radii - analysis of elastic strains - elastic compliance and stiffness constants - elastic waves in cubic crystals. (18 Hours)

UNIT III: PHONONS

Vibrations of crystals with monatomic basis - two atoms per primitive basis -Quantization of elastic waves - phonon momentum - inelastic scattering by phonons- phonon heat capacity - anharmonic crystal interactions - thermal conductivity. (18 Hours)

UNIT IV: FREE ELECTRON FERMI GAS & ENERGY BANDS

Energy levels in 1 D - Effect of temperture on the FD distribution - free electron gas in 3D heat capacity of the electron gas - electrical conductivity and Ohm's law- motion in magnetic fields - thermal conductivity of metals - nano structures nearly free electron model - Bloch function - Kronig - Penney model- wave equation of electron - periodic potential - number of orbital in a band. **(18 Hours)**

UNIT V: SEMI CONDUCTOR CRYSTALS

Band gap - equation of motion - intrinsic carrier concentration - impurity conductivity - thermoelectric effects - semi metals - super lattices. (18 Hours)

BOOKS FOR STUDY:

- 1. Solid State Physics Rita John McGraw Hill Edition, FirstEdition
- 2. Solid State Physics Charles Kittel Wiley Eastern Limited, VII Edition (1996)

DETAILED REFERENCES:

- Solid State Physics Rita John McGraw Hill Edition, First Edition UNIT I : Chapter 2: 2.1 - 2.12, 2.15 - 2.20
- 2. Solid State Physics Charles Kittel Wiley Eastern Limited, VII Edition (1996)
 UNIT I : Chapter 2
 UNIT II : Chapter 3
 UNIT III: Chapter 4&5
 UNIT IV: Chapter 6&7
 UNIT V : Chapter 8

BOOKS FORRERERENCE:

- 1. Solid State Physics S.O. Pillai Wiley Eastern Limited, 1994 Edition
- 2. Solid State Physics- Ajay Kumar Saxena, Macmillan India Ltd.

PRACTICAL - I

Semester: II

Code : 20PPH2P02

COURSE OUTCOMES:

CO.	UPON COMPLETION OF THIS COURSE	PSO	COGNITIVE
NO.	THE STUDENTS WILL BE ABLE TO	ADDRESSED	LEVEL
CO - 1	Carryout the experiments with advanced	PSO-1, PSO-3,	K, C, Ap, S, E
	instruments/recent technology.	PSO-4	
CO - 2	Write and execute programs with INTEL	PSO-1, PSO-3,	K, Ap, An, S, E
	8085 μ P .	PSO-4, PSO-5	
CO - 3	Construct electronic circuits for various	PSO-1, PSO-3,	C, Ap, S, E
	applications.	PSO-4, PSO-5	

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I			PI	RACI	ICAI	5 - II			Hours: 6				
Code : 20PPH2P02													
Course Outcomes	Programme Outcomes (PO)							Programme Specific Outcomes (PSO)				Mean Score of	
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's	
CO1	4	4	3	5	4	3	4	4	4	5	3	3.90	
CO2	4	3	3	5	4	3	4	4	4	5	3	3.81	
CO3	3	3	3	5	4	3	4	4	4	5	3	3.72	
			C)vera	11 Me	an Sc	ore	1	1			3.81	

Result: The Score for this Course is 3.81 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

LIST OF PRACTICALS:

- 1. Construction of Mod-3, Mod-5, Mod-10 Counters
- 2. To study of diode characteristics at different temperatures
- 3. Construction of Shift register & Ringcounter using IC's
- 4. Program to find Largest & Smallest elements in array using 8085µp
- Program to arrange the given set of numbers in the ascending & descending order
- 6. Construction of D/A Counter using IC 741
- 7. Construction of Wein's bridge & Phase shift Oscillator
- 8. To find the charge of an electron by Milikan's oil drop method
- 9. Measurement of Hall co-efficient by Hall effect in Semiconductor.
- 10. To find the velocity of waves through different liquid media using Nanofluid Interferometer.

ELECTRODYNAMICS AND PLASMA PHYSICS

Semester: II

Code : 20PPH2E2A

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Revise the fundamental laws of electromagnetic theory and deduce Maxwell's equations.	PSO-1, PSO-5	K, C, An
CO - 2	Analyze the propagation of electromagnetic waves in various media.	PSO-1, PSO-3, PSO-5	C, An
CO - 3	Discuss the radiation of EM waves.	PSO-2, PSO-3, PSO-5	K, C, An
CO - 4	Describe the concepts of plasma and its parameters.	PSO-2, PSO-3, PSO-5	C, An, E
CO - 5	Describe the various applications of plasma.	PSO-2, PSO-3, PSO-4, PSO-5	C, Ap, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	ELI	ELECTRODYNAMICS AND PLASMA						Hours: 6 Credits: 4					
Code : 20PPH2E2A				PHYSICS									
Course Program Outcomes				e Outcomes PO)			Programme Specific Outcomes (PSO)				c	Mean Score of	
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's	
COl	4	3	3	3	3	3	5	4	4	4	4	3.4	
CO2	4	4	3	3	3	2	4	4	5	4	4	4	
CO3	4	4	3	3	3	3	4	5	5	4	4	3.7	
CO4	4	4	3	4	3	3	5	3	4	3	4	3.6	
CO5	4	3	3	3	3	2	5	5	3	3	3	3.3	
	Overall Mean Score				3.6								

Result: The Score for this Course is 3.6 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: BASICS OF ELECTROMAGNETISM

Coulomb's law, Gauss law, Poisson's law - The equations of Poison's and Laplace conductors - Potential energy - charge distribution - Conservation of electric charge - electric charge - Biot savart law - vector potential - Ampere's circuital law. MAXWELL'S EQUATIONS

The potentials V and A - Lorenz condition - the divergence of E and the non homogeneous wave equation for V and A - the curl of B - Maxwell's equations Duality - Lorentz Lemma - The nonhomogeneous equations for E and B propagationofEMwavesinfreespace,non-conductingandconductingmedium good conductors. (18 Hours)

UNIT II: PROPAGATION OF EM WAVES

Propagation of plane EM waves in low pressure ionized medium -the Laws of Reflection and Snell's Law of Refraction - Fresnel's equations - Reflection and Refraction at the Interface between two nonmagnetic nonconductors - Total ReflectionatanInterfacebetweentwononconductors-ReflectionandRefraction at the surface of a Good conductor - Propagation through different interfaces propagation through Coaxial line -through rectangular wave guides.

(18 Hours)

UNIT III: RADIATION OF EM WAVES

Retarded potentials- Oscillating electric dipole- magnetic dipole and quadruple field radiation - half wave antenna - point charge radiation relativistic electrodynamics-Reciprocity theorem. (18 Hours)

UNIT IV: INTRODUCTORY PLASMA PHYSICS

Basic concepts of plasma, concepts of temperature-Debye shielding-the plasma parameter-criteria for plasmas applications in plasma. (18 Hours)

UNIT V: PLASMA APPLICATIONS

Motion of charged particle in electromagnetic fields - E and B uniform and nonuniform fields, time varying fields – Adiabatic invariants. (18 Hours)

BOOK FOR STUDY:

- 1. ElectromagneticFields&Waves,DaleCorson&PaulLorrain,CBSPublishers,New Delhi, Reprint2001
- Elements of Plasma Physics, S. N. Goswami, New Central Book Agency (P) Ltd., Culcutta, 1995

DETAILED REFERENCE:

- UNIT I: Chapter 2:2.1, 2.5, 2.6, 2.7, 2.8, 2.14, Chapter 7: 7.2, 7.7,
 Chapter 10: 10.1, 10.3 10.10 (all sections)
 Chapter 11: 11.1 11.5. (Book 1)
- **UNIT II:** Chapter 11: 11.6, Chapter 12: 12. 1 12.5, Chapter 13:13.2, 13.3 (Book 1)
- **UNIT III:** Chapter: 10.2, 10.2.1,

Chapter: 14.2 -14.2.1, 14.2.2, 14.2.3, 14.5.14.6. 14.8. (Book 1)

UNIT IV: Chapter 1: 1.1 -1.8, Chapter 4:4.5, Chapter 3:3.7,3.2,

Chapter 7: 7.1, 7.2 (Book 2)

UNIT V: Chapter 2: 2.1 - 2.3 - 2.3.1 - 2.3.3, 2.6, 2.1(Book 2)

BOOKS FOR REFERENCE:

- 1. Introduction to Plasma Physics & Controlled Fusion (Volume I), Francis, F. Chen, Plenum Press, New York, EditionII, 1995.
- 2. Electrodynamics, David Griffiths, Pearson Education, III Edition, 1998.

CRYSTAL GROWTH AND THIN FILM CHARACTERIZATION

Semester:II

Hours: 6 Credits: 4

Code : 20PPH2E2B COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Discuss the different techniques of crystal growth.	PSO-1, PSO-4	K, C
CO - 2	Investigate the various factors of nucleation for crystal growth.	PSO-3, PSO-4	С, Ар, Е
CO - 3	Analyze the crystal structure and morphology using different characterization techniques.	PSO-1,PSO-3, PSO-4, PSO-5	C, An, S, E
CO - 4	Describe different thin film deposition techniques.	PSO-1, PSO-4	K, Ap, S,
CO - 5	Discuss the applications of thin films in various fields.	PSO-2, PSO-3, PSO-4	C, Ap, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	•	CRYSTAL GROWTH AND THIN						Hours: 6 Credits: 4					
Code : 20PPH2E2B					FIL								
Course (PO)							Programme Specific Outcomes (PSO)				Mean Score of		
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's	
COl	4	5	4	3	4	3	5	4	4	3	3	3.81	
CO2	5	4	4	4	4	3	5	4	4	3	3	3.90	
CO3	5	4	4	4	3	5	5	5	4	4	3	4.09	
CO4	4	5	4	4	4	3	5	4	4	4	3	4.00	
CO5	5	3	4	3	4	3	5	5	4	4	3	3.90	
Overall Mean Score					3.94								

Result: The Score for this Course is 3.94 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: CRYSTALLIZATION FROMSOLUTION

Main categories of crystal growth methods - Chemical Physics of crystal growth - Solid growth techniques - Melt growth techniques -Solution growth methods - Vapour phase growth -Choosing a crystal growth method. **Solution method:** Basic requirements - Crystallization apparatus - Saturation and seeding factors that influence the perfection of the final crystal - Control of crystal - Control of Crystal morphology. (18 Hours)

UNIT II: CRYSTAL GROWTH IN GEL MEDIA

Various methods of gel growth - Growth mechanism - Nucleation control -Morphology of various gel growth crystals. **Crystal pulling:** Material consideration - Crystal growth - Solid solutions and impurities - Growth control -Special techniques. (18 Hours)

UNIT III: STRUCTURAL CHARACTERIZATION OF CRYSTALS

Different probes for structure analysis - Principles of X-ray diffraction -Experimental methods in structure analysis - Structure determination - Structure refinement. Crystalline perfection and Electrical characterization - Volume, area, line and point defects - Threshold concentration of defects in crystals - Methods of defecting imperfections - Two probe method to determine dielectric constant, electrical conductivity and thermo electric power. (18 Hours)

UNIT IV: THIN FILM DEPOSITION TECHNIQUES

Thermal evaporation - Flash, Arc, Laser and Electron beam evaporation -Sputtering mechanism - Sputtering yield - DC sputtering - RF sputtering -Glow discharge sputtering - Chemical methods - Spray pyrolysis - Electrodeposition - Anodization - Solution growth -study of vacuum coating unit - MBE - Laser ablation. (18 Hours)

UNIT V: THIN FILM APPLICATIONS

Material selection - Design and fabrication of thin film resistor - Thin film capacitor -Thin film diode - Thin film transistor - Transparent conducting oxide thin films - Semiconducting oxide thin films - Thin film solar cells - CdS and Cu₂S based solar cells - CdS/Cu₂S and CdS/Cu in Se₂ solar cells - Thin film mask blanks for VLSI - Thin film sensors for gas detection. **(18 Hours)**

BOOKS FOR STUDY

- 1. P. Santhana Raghavan and P. Ramasamy Crystal Growth: Processes and Methods-KruPublications-2000.
- Goswami Thin film Fundamentals New Age International Publishers, New Delhi 2014.

BOOKS FOR REFERENCE

- 1. Brian R. Pamplin Crystal Growth, II edition Pergamon Press, Oxford 1980.
- 2. Heinz K. Heinsch Crystals in Gels and Liesegang Rings Cambridge University Press 1938.
- Donald L. Smith Thin Film deposition, Principles and Practice McGraw Hill Inc., - 1995.
- 4. O. S. Heavens Thin film Physics Methuen & Co., London 1970.
- 5. K. L. Chopra Thin film phenomenon McGraw Hill, New York 1990.

MAGNETIC MATERIALS AND THEIR APPLICATIONS

Semester: II

Code : 20PPH2E2C

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Discuss the nature of magnets.	PSO-1, PSO-5	K, C, An
CO - 2	Describe different physical phenomena related to magnetism.	PSO-3, PSO-5	K, An, E
CO - 3	Analyze various properties of magnets.	PSO-2, PSO- 4, PSO-5	C, An, S, E
CO - 4	Apply the underlying Physics behind a variety of magnetic materials.	PSO-1,PSO-4, PSO-5	K, Ap, S, E
CO - 5	Choose proper magnetic material for a particular application.	PSO-1, PSO-2, PSO-4	K, Ap, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: II					MAGNETIC MATERIALS AND THEIR						Hours: 6	
Code : 20PPH2E2C					APPLICATIONS							Credits: 4
Course (PO)						tcomes Programme Specific Outcomes (PSO)						Mean Score of
Outcomes 1 2 3		4	5	6	1	2	3	4	5	CO's		
CO1	4	5	4	3	4	3	5	3	4	3	5	3.91
CO2	5	4	4	4	4	3	4	4	5	3	5	4.09
CO3	5	4	4	4	3	5	3	5	3	4	5	4.09
CO4	4	5	4	4	4	3	5	3	3	5	4	4.00
CO5	5	3	4	3	4	3	5	4	3	4	3	3.73
	Overall Mean Score								3.96			

Result: The Score for this Course is 3.96 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: REVIEW ON BASIC MAGNETISM

Magnetic poles - Magnetic flux - Circulating currents - Ampere's circuital law -Biot- Savart law - Field from a straight wire - Magnetic dipole - Magnet induction and magnetization - Flux density - Susceptibility and permeability - Hysteresis loops - Solution of the Schrodinger equation for a free atom- Extension to many electron atoms - Normal Zeeman effect - Pauli Exclusion Principle - R-S coupling -Hund's rules - jj coupling - Anomalous Zeeman effect. (18 hours)

UNIT II: DIAMAGNETISM AND PARAMAGNETISM

Diamagnetism: Diamagnetic susceptibility - Diamagnetic substances & applications - Superconductivity- Paramagnetism: Langevin theory of paramagnetism - Curie - Weiss law - Quenching of orbital angular momentum - Pauli Paramagnetism - Paramagnetic oxygen - Uses of paramagnets. (18 hours)

UNIT III: FERROMAGNETISM, ANTIFERROMAGNETISM, FERRIMAGNETISM AND ANISTROPY

Interactions in ferromagnetic materials: Weiss molecular field theory - Origin of the Weiss molecular field - Collective-electron theory of ferromagnetism -Ferromagnetic domains - Observing domains-Occurrence of domains - Domain walls - Magnetization and hysteresis - Antiferromagnetism: Neutron diffraction -Weiss theory of antiferromagnetism - Cause of negative molecular field -Applications Fer- rimagnetism: Weiss theory of ferrimagnetism - Ferrites - The garnets - Half-metallic antiferromagnets Magnetocrystalline anisotropy - Shape anisotropy - Induced magnetic anisotropy. (18 hours)

UNIT IV: APPLICATIONS OF MAGNETIC MATERIALS

Magnetic media - Write heads - Read heads - Future of magnetic data storage-Magneto-optics basics-Magneto-optic recording-Magnetic semiconductors: II-VI diluted magnetic semiconductors- III-V diluted magnetic semiconductors.

(18 hours)

UNIT V: PERMANENT MAGNETS AND SOFT MAGNETIC MATERIALS

Permanent magnets – Soft Magnetic materials: Survey of Materials- The Random-Anisotropy Model- Dependence of Soft- Magnetic Properties on Grain Size- Head Materials and Their Applications- Invar Alloys- Magnetistrictive Materials.

(18 hours)

BOOKS FOR STUDY:

- 1. Magnetic Materials Fundamentals and Applications Nicola A. Spaldin, Cambridge University Press, 2003.
- Physics of Magnetism and Magnetic Materials K.H.J Buschow and F.R De Boer, Kluver Academic Publishers, London, 2003.

DETAILED REFERENCES:

 Magnetic Materials Fundamentals and Applications - Nicola A. Spaldin, Cambridge University Press, 2003.
 UNIT I : Chapter 1, Chapter 2, Chapter 3
 UNIT II : Chapter 4, Chapter 5
 UNIT III : Chapter 6, Chapter 7, Chapter 8, Chapter 9, Chapter 10
 UNIT IV: Chapter 11 Chapter 12 Chapter 13
 Physics of Magnetism and Magnetic Materials - K.H.J Buschow and F.R De Boer, Kluver Academic Publishers, London, 2003.

UNIT V: Chapter 12, Chapter 14, Chapter 15, Chapter 16

BOOKS FOR REFERENCE:

- Introduction to Magnetic Materials B.D. Cullity and C.D. Graham. Addison-Wesley, 1972.
- 2. Introduction to Magnetism and Magnetic Materials D. Jiles. Chapman & Hall, 1996.
- 3. Molecular Quantum Mechanics P.W. Atkins. Oxford

NANO MATERIALS AND THEIR APPLICATIONS

Semester: II

Code : 20PPH2GE1

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Acquire the basic knowledge on nanoscience and nanotechnology.	PSO-3, PSO-4, PSO-5	K, C, An
CO - 2	Predict the effect of reduced dimensionality on material properties.	PSO-2, PSO-3, PSO-4, PSO-5	K, An, S, E
CO - 3	Develop understanding on the exotic properties of nanostructured materials.	PSO-2, PSO-3, PSO-4	K, C, An, E
CO - 4	Introduce various techniques available for the processing of nanostructured materials.	PSO-2, PSO-4	K, Ap, S, E
CO - 5	Emphasize the importance and development of nanotechnology in various fields.	PSO-3, PSO-4, PSO-5	K, An, S, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: II					NANO MATERIALS AND THEIR APPLICATIONS					Hours: 4		
Code : 20PPH2GE1				NAN	ANO MATERIALS AND THEIR APPLICATIONS					Credits: 3		
Course (PO)							Programme Specific Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	4	5	4	3	4	3	5	4	5	4	4	4.09
CO2	5	4	4	4	4	3	3	4	5	4	5	4.09
CO3	5	4	4	4	3	5	3	4	5	4	3	4.00
CO4	4	5	4	4	4	3	3	5	3	4	3	3.82
CO5	5	3	4	3	4	3	3	3	5	4	4	3.73
			C	Overa	ll Me	an Sc	ore					3.95

Result: The Score for this Course is 3.95 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: INTRODUCTION TO NANOSCIENCE

Hours: 4

Credits: 3

History – Definition of Nanometer, Nanometer and Nanotechnology-Classification of Nanomaterials- Nanotechnology from the Perspective of Medieval Period -Classification of Solid state Materials- Bulk Properties of Materials-Effect of Size reduction on Bulk Properties-Optoelectronic Property of Bulk and Nanostructures. (12 hours)

UNIT II: NANOSTRUCTURES AND DIMENSIONS

Quantum confinement: Quantum wells, Quantum wires, Quantum Dots- Summary of the Confined states in Quantum Wells, Quantum Wires and Quantum Dots, Different Types of Nanostructures: Introduction- Shapes and Structures of Nanomaterials- Size Effect on Shape of Materials- Size Effect on Electronic Properties- Nanorods, Nanocones, Nanotertrapods, Nanoparticles- Nanocombs and Nanowalls- Nanotubes, Nanowires and Nanoislands- Semiconductor Nanoparticles. (12 hours)

UNIT III: SYNTHESIS OF NANOMATERIALS

Synthesis Techniques for the Preparation of Nanoparticles: Bottom – Up Approach – Sol-Gel Synthesis – Hydrothermal growth- Thin film Growth: Physical Vapor Deposition- Chemical Vapor Deposition Top-Down Approach- Ball Milling – Micro fabrication – Lithography – Ion-Beam Lithography. (12 hours)

UNIT IV: CHARACTERIZATION OF NANOMATERIALS

Introduction – X- Ray Diffraction and Scherrer Method- Scanning electron microscope- Transmission electron microscope- Energy-Dispersive X-Ray Analysis-Scanning Probe Microscope (SPM) - Atomic Force Microscopy-Photoluminescence Spectra- Raman Spectroscopy. (12 hours)

UNIT V: APPLICATIONS OF NANOMATERIALS

Introduction – Applications in Biology and Medicine- Applications in surface Science- Applications in Energy and Environment- Applications of Nanostructured Thin Films- Applications of Quantum Dots- Carbon Nanotechnology- Graphene-Applications of Carbon Nanotubes. (12 hours)

BOOKS FOR STUDY

M. S. Ramachandra Rao, Shubra Singh, Nano science and Nanotechnology: Fundamental to Frontiers, Wiley India pvt. Ltd (2013).

DETAILED REFERENCE

- M. S. Ramachandra Rao, Shubra Singh, Nano science and Nanotechnology: Fundamental to Frontiers, Wiley India pvt. Ltd (2013).
- UNIT I : Chapter 1- All Sections, Chapter 2: 2.4, 2.5, 2.7, 2.8
- UNIT II : Chapter 3: 3.3-3.3.1, 3.3.2, 3.3.3, 3.3.4, Chapter 5: 5.1, 5.2-5.2.1 to 5.2.5, 5.4
- **UNIT III :** Chapter 4 4.4.1,4.4.2
- **UNIT IV** : Chapter 8-8.1-8.7, 8.13, 8.14
- **UNIT V** : Chapter 10-10.1, 10.3-10.8

BOOKS FOR REFERENCES:

- 1. C.Binns, Introduction to Nanoscience and Nanotechnology, Vol. 14, John Wiley & Sons, 2010.
- 2. P.C. Poole Jr, and F.J. Owens, Introduction to Nanotechnology, John Wiley & Sons, 2003.
- R. Kelsall, I.W. Hamley, and M.Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, 2005.

SOFT SKILLS

Semester: II

Code : 20PSE2S01

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Develop their social, interpersonal, cognitive, ethical, professional, reading and communication skills	PSO-1	K
CO - 2	Increase their self-esteem and confidence.	PSO-2,4	Ар
CO - 3	Achieve their short and long term goals.	PSO-3	Sy
CO - 4	Prepare and formulate their resumes wisely.	PSO-4	Ар
CO - 5	Face the mock group discussions and interviews with a challenge and choose their right career.	PSO-5	Ар

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: II Code : 20PSE2S01						SOFT	SKIL	LS			Hours: 2 Credit: 1	
Course (PO)							Programme Specific Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	4	4	4	4	4	5	4	4	4	4	5	4.18
CO2	4	4	4	4	4	5	4	4	4	4	5	4.18
CO3	4	4	4	4	4	5	4	4	4	4	5	4.18
CO4	4	4	4	4	4	5	4	4	4	4	5	4.18
CO5	4	4	4	4	4	5	4	4	4	4	5	4.18
			C)vera	11 Me	an Sc	ore					4.18

Result: The Score for this Course is 4.18 (High Relationship)

Note:

Mapping	1 - 20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 2

Credit: 1

UNIT I: SOFT SKILLS

Introduction - Soft skills - Importance of soft skills - Selling your soft skills - Attributes regarded as soft skills - Soft skills - Social - Soft skills - Thinking - Soft skills - Negotiating - Exhibiting your soft skills - Identifying your soft skills - Improving your soft skills - will formal training enhance your soft skills - Soft Skills training - Train yourself - Top 60 soft skills - Practicing soft skills - Measuring attitude. (6 Hours)

UNIT II: CAREER PLANNING

Benefits of career planning - Guidelines for choosing a career - Myths about choosing a career - Tips for successful career planning - Developing career goals - Final thoughts on career planning - Things one should know while starting career and during his/her career. (6 Hours)

UNIT III: ART OF LISTENING AND SPEAKING

Two ears, one mouth - Active listening - Kinds of Listening, Common - poor listening habits - Advantages of listening - Listening Tips. Special features of Communication - Process - Channels of Communication - Net Work - Barriers -Tips for effective communication and Powerful presentation - Art of public speaking - Public Speaking tips - Over coming fear of public speaking. (6 Hours)

UNIT IV: ART OF READING AND WRITING

Good readers - Benefits - Types - Tips - The SQ3R Technique - Different stages of reading - Rates of Reading - Determining a student's reading rate - Increasing reading rate - Problems with reading - Effective reader - Importance of writing -Creative writing - Writing tips - Drawbacks of written communication. **(6 Hours)**

UNIT V: PREPARING CV / RESUME

Meaning - Difference among Bio-data, CV and Resume - The terms - The purpose of CV writing - Types of resumes - Interesting facts about resume - CV writing tips - CV/Resume preparation - the dos - CV/Resume preparation - the don'ts -Resume check up - Design of a CV - Entry level resume - The content of the resume - Electronic resume tips - References - Power words - Common resume blunders - Key skills that can be mentioned in the resume - Cover letters - Cover letter tips. (6 Hours)

COURSE BOOK:

Str. K. Alex, Soft Skills, Chand & Company Pvt. Ltd., New Delhi.

BOOKS REFERENCE:

- Dr. T. Jeya Sudha & Mr. M.R. Wajida Begum : Soft Skills/Communication Skills, New Century Book House (P) Ltd., Chennai.
 S. Hariharen, N. Sundararajan & : Soft Skills, MJP Publishers, Chennai.
 - S.P. Shanmuga Priya

CONTINUOUS INTERNAL ASSESSMENT COMPONENT (CIA)

COMPONENT	MARKS
Internal test I	40
Internal test II	40
Seminar	10
Term Paper	5
Attendance	5
Total	100

THEORY:

CONTINUOUS INTERNAL ASSESSMENT COMPONENT (CIA)

Passing Minimum: 50% out of 100

INTERNAL QUESTION PATTERN

(Maximum Marks-40)

Part - A

10 Questions × 1Mark = 10 Marks

Part - B

2 Questions × 5 Marks = 10 Marks

(Internal Choice and One Question from Each Unit)

Part - C

2 Questions × 10 Marks = 20 Marks

(Open Choice, Two Questions out of Three)

QUANTUM MECHANICS - I

Semester: III Code : 20PPH3C06 COURSE OUTCOMES:

Hours: 6 Credits: 6

CO NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Describe the characteristic features of various quantum systems.	PSO - 1	K, U
CO-2	Analyze the conditions on the Schrodinger wavefunction and the basic postulates of quantum mechanics	PSO - 2	An
CO-3	Develop the general formalism for exact solutions of eigen value problems	PSO - 3	С
CO-4	Compare the quantum mechanical treatments of the scattering of a particle and mutual scattering of two particles	PSO - 2, 3	An, C
CO-5	Explain various aspects of angular momentum based on quantum theory.	PSO - 1, 2	U, An

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: III					0	п а кги	ידודאיז האו	ЕСНА	MICS	т		Hours: 6
Code : 20PPH3C06					Credits: 6							
Course Outcomes				nme Outcomes (PO)				Programme Specific Outcomes (PSO)				Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
COl	5	3	5	5	3	2	5	4	3	2	4	3.73
CO2	5	4	4	5	4	3	4	5	3	3	4	3.90
CO3	5	4	5	5	4	3	4	4	5	3	4	4.18
CO4	5	3	5	5	3	2	4	5	5	2	4	3.90
CO5 5 3 4 5 3 2						5	5	4	2	4	3.81	
	Overall Mean Score									3.90		

Result: The score for this course is **3.90** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: SCHRODINGER EQUATION AND STATIONARY STATES

Inadequacy of classical concepts - Black body radiation - Specific heats of solids -Photoelectric effect - Compton effect - Schrodinger equation - Free particle in 1D -Generalization to 3D - Particle subject to forces. Normalization and Probability Interpretation - Box Normalization - Conservation of Probability - Expectation Values: Ehrenfest's Theorem - Admissibility Conditions - Time Independent Schrödinger equation - Particle in a Square Well Potential - Bound states - Nonlocalized states. (18 Hours)

UNIT II: WAVE MECHANICS

Schrödinger equation and Probability Interpretation for N Particle system -Fundamental Postulates of Wave Mechanics - Adjoint of an Operator - Degeneracy - Eigenvalue problem - Self Adjoint operators - Dirac Delta Function -Observables - Closure - Physical interpretation - Momentum Eigen functions - Uncertainty Principle - Minimum value for Uncertainty Product - Removal of degeneracy -Evolution of System with Time. (18 Hours)

UNIT III: EXACTLY SOLUBLE EIGENVALUE PROBLEMS

Simple harmonic oscillator -Schrodinger equation and Energy eigenvalues -Energy eigenfunctions - Properties of Stationary states - Abstract Operator method - Coherent States - Angular momentum operators - Eigenvalue equation for L_2 - Eigenvalues and Eigenfunctions - Spherical harmonics. Hydrogen Atom -Energy levels - Stationary State Wavefunctions - Discussion of Bound States.

(18 Hours)

UNIT IV: SCATTERING THEORY

Differential and Total Cross-sections - Scattering Amplitude - Green's Functions -Born Approximation - Validity - Born Series - Eikonal approximation - Partial Wave Analysis - Phase Shifts - Optical theorem - Potentials of finite range - Low energy scattering - resonant and non resonant scattering. (18 Hours)

UNIT V: ANGULAR MOMENTUM

Eigenvalue spectrum - Matrix representation of J in the |jm> basis - Spin angular momentum - Diamagnetism - Addition of Angular momenta - Clebsch-Gordan Coefficients - Spin wavefunctions for a system of two spin-1/2 particles - Addition of Spin and Orbital Angular momenta. (18 Hours)

BOOK FOR STUDY:

P. M. Mathews & K. Venkatesan - A Textbook of Quantum Mechanics, Second Edition (Seventh Reprint 2014) - McGraw Hill Education (India) Private Limited, New Delhi.

DETAILED REFERENCE:

P. M. Mathews & K. Venkatesan - A Textbook of Quantum Mechanics, Second Edition (Seventh Reprint 2014) - McGraw Hill Education (India) Private Limited, New Delhi.

UNIT I : Chapter 1: 1.3 to 1.6, Chapter 2: 2.1 to 2.12
UNIT II : Chapter 3: 3.1 to 3.14
UNIT III : Chapter 4: 4.1 to 4.9, 4.15 to 4.17
UNIT IV : Chapter 6: 6.1 to 6.13
UNIT V : Chapter 8: 8.1 to 8.9

BOOKS FOR REFERENCE:

- 1. L. I. Schiff Quantum Mechanics, III edition Tata McGraw Hill, New Delhi 1968.
- Bjorken & Drell Relativistic Quantum Fields Tata McGraw Hill, New Delhi -1965.
- J. J. Sakurai Advanced Quantum Mechanics Pearson Education Inc., New Delhi -2008.
- S. L. Kakani and H. M. Chandalia Quantum Mechanics Sultan & Sons, New Delhi - 2007.
- Chatwal Anand Quantum Mechanics Himalaya Publishing House, Mumbai -2007.

SOLID STATE PHYSICS - II

Semester: III

Code : 20PPH3C07

COURSE OUTCOMES:

CO NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Compute the energy bands of crystals with theoretical and experimental methods.	PSO - 1, 2, 3	U, An, C
CO-2	Analyze the optical properties of crystals and various types of interactions in solids.	PSO - 2, 3	An, C
CO-3	Describe the properties and applications of superconductors and theories related to it	PSO - 1, 2	U, An, Ap
CO-4	Discuss the various magnetic properties of crystals.	PSO - 2	An, Ap
CO-5	Analyze the dielectric properties and imperfections in crystals	PSO - 2	An, Ap

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester : 1	Semester : III						מיזי א יזי ב	STATE PHYSICS - II			Hours: 6	
Code : 20PPH3C07					Credits: 5							
Course		F	rogra	amme	e		I	Progra	mme S	pecifi	C	Mean
Outcomes		Οτ	itcom	mes (PO)				Outc	omes ((PSO)		Score of
Outcomes 1		2	3	4	5	6	1	2	3	4	5	CO's
CO1	4	4	4	5	4	3	5	5	5	4	3	4.8
CO2	5	5	4	3	3	3	4	5	5	4	3	4
CO3	4	3	4	4	4	3	5	5	4	5	3	4
CO4	4	3	3	3 4 4 3				5	4	3	3	3.63
CO5 5 3 4 4 4 3					3	4	5	4	3	3	3.81	
	Overall Mean Score									3.92		

Result: The score for this course is **3.92** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: FERMI SURFACES AND METALS

Construction of Fermi surfaces - Electron orbits, Hole orbits and open orbitscalculation of Energy bands - Tight binding method - Wigner Seitz method -Cohesive energy - Pseudopotential methods - Experimental methods in Fermi surface studies - Quantization of orbits in a magnetic field - De-Hass Van Alphen effect - External orbits-Fermi surface of copper-Fermi surface of Gold-Magnetic breakdown. (18 Hours)

UNIT II: PLASMONS, POLARITONS, POLARONS AND EXCITONS

Dielectric function of the e-gas - Plasma optics - Dispersion relation for electromagnetic waves - Transverse optical modes in a plasma - Transparency of Alkali metals in the Ultraviolet - Longitudinal Plasma Oscillations - Plasmons -Electrostatic screening - Screened Coulomb potential - Pseudopotential Component U(o)- Mott-Metal insulator transition - Creening and phonons in metals-LST relation - electron-electron interaction - electron-phonon interaction -Peierls instability of linear metals - Optical reflectance - Kramers-Kronig relations-Conductivity of collisionless electron gas - Electronic interband transitions -Excitons - Frenkel Excitons - Alkali Halides - Molecular crystals - Mott-Wannier Excitons - EHD - Raman effect in Crystals - Energy loss of fast particles in a solid.

(18 Hours)

UNIT III: SUPERCONDUCTIVITY

Experimental survey - Occurrence of Superconductivity - Destruction of superconductivity by magnetic fields- Meissner effect - Heat capacity- Energy gap-Microwave Infrared properties - Isotope effect - Theoretical survey -Thermodynamics of the superconducting transition - London equation - Coherence Length - BCS theory - BCS ground state - Flux quantization in a superconducting ring - Duration of persistent currents - Type-II superconductors - Vortex state -Estimation of Hcl & Hc2 - Single particle tunneling - Josephson superconducting tunneling - DC & AC Josephson effects - Macroscopic quantum interference - Hightemperature superconductors - Critical fields and critical currents - Hall number -Fullerenes. (18 Hours)

UNIT IV: DIAMAGNETISM, PARAMGNETISM AND FERROMAGNETIC ORDER

Langevin diamagnetism equation - Quantum theory of diamagnetism - Paramagnetism - Quantum theory of para-magnetism - Cooling by isentropic demagnetization - Paramagnetic susceptibility of conduction electrons-Ferromagnetic Order - Curie point and the exchange integral - Temperature of the saturation magnetization - saturation magnetization at absolute - Quantization of

50

spin waves - Thermal excitation of Magnons - Neutron magnetic scattering -Ferrimagnetic order - Anti ferromagnetic order - Ferro magnetic domains -Anisotropy energy- Transition region between domains - Solitons - origin of domains - Coercivity and hysteresis - Single domain particles - Magnetic bubble domain. (18 Hours)

UNIT V: MICROSCOPIC ELECTRIC FIELD AND LATTICE VACANCIES

Microscopic electric field - Local electric field at an atom - Dielectric constant and polarizability - Structural phase transitions - Ferro electric crystals - Displace transitions - Lattice vacancies - Diffusion - Color centers -Dislocations - Shear Strength of crystals - Slip - Dislocations - Burgers vector - Stress fields of dislocations - Low-angle grain boundaries - Dislocation Densities - Dislocation multiplication slip - strength of Alloys - Dislocation and crystal growth - Whiskers-Hardness of materials (18 Hours)

BOOK FOR STUDY:

> Charles Kittel - Solid State Physics, VIII edition - Wiley Eastern Ltd. - 1996.

DETAILED REFERENCE:

- > Charles Kittel Solid State Physics, VIII edition Wiley Eastern Ltd. 1996.
 - **UNIT I** : Chapter 9
 - **UNIT II** : Chapter 15 & 16
 - **UNIT III** : Chapter 10
 - **UNIT IV** : Chapters 11 & 12
 - **UNIT V** : Chapters 14, 20, 21

BOOKS FOR REFERENCE:

- 1. S. O. Pillai Solid State Physics Wiley Eastern Ltd. 1994.
- 2. Ajay Kumar Saxena Solid State Physics Macmillan India Limited 2006.

PRACTICALS - III

Semester: III

Code : 20PPH3P03

COURSE OUTCOMES:

CO.	UPON COMPLETION OF THIS COURSE	PSO	COGNITIVE
NO.	THE STUDENTS WILL BE ABLE TO	ADDRESSED	LEVEL
CO-1	Carryout the experiments with advanced instruments.	PSO - 3	Ар
CO-2	Write and Execute the programs with INTEL $8085 \ \mu$ P and interface them with displays.	PSO - 3	Ар
CO-3	Construct electronic circuits for various applications.	PSO - 3	Ар

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: III							RACTICAL - III			Hours: 6		
Code :	1											
Course Progra			umme (P		come	5	Programme Specific Outcomes (PSO)			C	Mean Score of	
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	4	4	3	5	4	3	4	4	4	5	3	3.90
CO-2	4	3	3	5	4	3	4	4	4	5	3	3.81
CO-3	3	3	3 3 5 4 3 4 4 4							5	3	3.72
Overall Mean Score								3.81				

Result: The score for this course is **3.81** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

LIST OFPRACTICALS

- To determine the resistivity and band gap of a semiconductor using four probe method.
- To measure the mutual inductance of the circuit at various distances by Anderson's bridge.
- 3. To measure the numerical aperture of an optical fiber.
- 4. To measure the wavelength of light with diffraction grating -Laser experiment.
- To construct low pass, high pass and band pass active filters using IC 741 and to study its frequencies.
- 6. To construct a one bit, two bit and four bit digital comparators.
- 7. To write various assembly language program using 8085 μP Code conversion
- 8. To access memory for read/write operations using 8085 μP Interfacing
- 9. To construct A/D Converter using ICs.
- 10. To calculate the refractive indices of fluids using Nanofluid meter.

NUMERICAL METHODS AND MATLAB

Semester: III

Code : 20PPH3E3A

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Compute the roots of polynomial and transcendental equations and apply interpolation techniques.	PSO - 1,2	U, An, Ap
CO-2	Solve algebraic equations and analyze curve fitting using various methods.	PSO - 2, 3	An, Ap, C
CO-3	Solve second order differential equations and compute numerical integration using different rules.	PSO - 2,3	An, Ap, C
CO-4	Apply MATLAB software to solve simple problems	PSO - 1, 2	U, Ap
CO-5	Write program using MATLAB software for solving numerical methods	PSO - 3	С

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	II			NTT	NUMEDICAL			UODS	רדא א	ъл ж пт	тлр	Hours: 6
Code : 20PPH3E3A				IN U.	NUMERICAL METHODS AND MATLAB							Credits:4
Course	J	Programme Outcomes (PO)					P	-	mme omes	-		Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	4	3	4	3	2	5	5	4	4	3	3.81
CO-2	5	4	3	4	3	2	4	5	5	4	3	3.81
CO-3	5	4	3	4	3	2	4	5	5	3	3	3.72
CO-4	5	4	3	4	3	2	5	5	4	4	3	3.81
CO-5	5	4	3	4	3	2	4	4	5	4	3	3.72
	Overall Mean Score						3.77					

Result: The score for this course is **3.77** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High
X 1 0 1					

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Credits: 4

UNIT I: POLYNOMIAL AND TRANSCENDENTAL EQUATIONS

Basic properties of equations - Synthetic division - Bisection method - Regula Falsi method - Secant method - Iteration method - Aitken's method - Newton Raphson method.

INTERPOLATION

Equal intervals: Newton's forward and backward interpolation formula - Unequal intervals: Lagrange's formula. (18 Hours)

UNIT II: CURVE FITTING

Laws reducible to linear law - Method of least squares - Fitting a curve - Method of group averages Method of moments.

SIMULTANEOUS ALGEBRAIC EQUATIONS

Direct methods of solution: Cramer's rule, Matrix inversion method, Gauss elimination method, Gauss-Jordan method, Factorization method - Iterative methods of solution: Jacobi's method, Gauss Siedel method, Relaxation method.

(18 Hours)

UNIT III: ORDINARY DIFFERENTIAL EQUATIONS

Picard's method - Taylor's Series method - Euler's method - Modified Euler's method - Runge's method - Runge Kutta method - Predictor Corrector methods.

NUMERICAL INTEGRATION

Trapezoidal rule - Simpson's 1/3 rule - Simpson's 3/8 rule - Boole's rule -Weddle's rule - Errors in quadrature formulae.(18 Hours)

UNIT IV: MATLAB FUNDAMENTALS

MATLAB environment - Types of files - Character set - Data types - Constants and variables - Operators - Hierarchy of operations - Built-in functions - Assignment statement - Data input - Interactive inputs - Reading/Storing File Data - Output commands - Low level input/output functions - Loops - Branches - Break and Continue statements - Editor - MATLAB programming - Function Subprograms -Passing function Arguments - Function Workspace. (18 Hours)

UNIT V: MATLAB PROGRAMS FOR NUMERICAL METHODS

MATLAB programs for: Bisection method - Regula-falsi method - Newton Raphson method - Gauss Elimination method - Factorization method - Gauss Siedal iteration method - Method of Least Squares - Method of Group Averages - Method of Moments - Newton's forward interpolation formula - Lagrange's interpolation formula - Trapezoidal rule - Simpson's rule - Euler's method - Modified Euler's method - Runge Kutta method. (18 Hours)

BOOKS FOR STUDY:

- 1. B. S. Grewal and J. S. Grewal Numerical methods in Engineering & Science, Eleventh Edition - Khanna Publishers, New Delhi - 2017.
- Raj Kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma MATLAB and its applications in Engineering, Second Edition - Pearson India Education Services Pvt. Ltd. Uttar Pradesh - 2017.

DETAILED REFERENCE:

- B. S. Grewal and J. S. Grewal Numerical methods in Engineering & Science, Eleventh Edition - Khanna Publishers, New Delhi - 2017.
 UNIT I : Chapter 2: 2.1 - 2.5, 2.8 - 2.12, Chapter 7 : 7.1 - 7.3, 7.11, 7.12
 UNIT II : Chapter 5 : 5.1 - 5.7, 5.9 - 5.11, Chapter 3: 3.3 - 3.5
 UNIT III : Chapter 10: 10.1 - 10.7, Chapter 8: 8.4 - 8.6
- Raj Kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma MATLAB and its applications in Engineering, Second Edition - Pearson India Education Services Pvt. Ltd. Uttar Pradesh - 2017.
 - **UNIT IV :** Chapter 1: 1.3, 1.5, Chapter 2: 2.2 2.8, Chapter 5: 5.2 5.6, Chapter 7: 7.2 7.5, Chapter 8: 8.2 8.6

UNIT V: Chapter 16: 16.3 - 16.5, 16.8 - 16.11, 16.13 - 16.17, 16.20 - 16.24

BOOKS FOR REFERENCE:

- H. K. Jain, S. R. K. Iyengar and R. K. Jain Numerical methods for Scientific and Engineering Computation, IV edition - New Age International (P) Limited, Publishers, New Delhi - 2002.
- J. N. Sharma Numerical Methods for Engineers and Scientists Narosa Publishing House, New Delhi - 2004.
- P. Kandasamy, K. Thilagavathy and K. Gunavathy Numerical Methods S. Chand & Company Ltd, New Delhi - 2003.
- 4. E. Balagurusamy Numerical Methods Tata McGraw Hill Publishing Company Limited, New Delhi - 2005.

NANOMATERIALS

Semester:III

Code : 20PPH3E3B COURSE OUTCOMES:

UPON COMPLETION OF THIS COURSE CO. PSO COGNITIVE NO. THE STUDENTS WILL BE ABLE TO ADDRESSED LEVEL CO-1 Explain the various methods of synthesis and PSO - 1 K, U characterization of nanomaterials. recent CO-2 Discuss advancements **PSO -** 1 U, An the of PSO - 2 nanomaterials and composites. CO-3 Describe the experimental techniques for the PSO - 1 U, An fabrication of nanomaterials. **PSO - 2** CO-4 PSO - 2 Analyze and interpret the properties of An, Ap nanomaterials using different characterization techniques. CO-5 Analyze the usage of nanomaterials for **PSO - 2** An, Ap innovative applications.

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	II					NT 77 NT	<u>ОЪД Т</u>	ΟΜΑΤΈΡΙΑΙ Ο				Hours: 6
Code : 20PPH3E3B				NANOMATERIALS								Credits: 4
Course	F	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)				ic	Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	4	5	4	4	5	3	5	4	4	3	3	4
CO-2	5	4	5	4	4	3	5	5	4	4	3	4.18
CO-3	4	5	5	3	5	3	5	5	4	4	3	4.18
CO-4	5	4	5	3	5	3	4	5	4	4	3	4.09
CO-5	5	4	4	4	5	3	4	5	4	3	3	4
	Overall Mean Score							4.09				

Result: The score for this course is **4.09** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6 Credits: 4

UNIT I: INTRODUCTION TO NANOMATERIALS

Emergence of Nanotechnology - Bottom-Up and Top-Down Approaches - Challenges in Nanotechnology.

PHYSICAL CHEMISTRY OF SOLID SURFACES

Surface Energy - Chemical Potential as a Function of Surface Curvature -Electrostatic Stabilization - Surface Charge density - Electric potential at the proximity of solid surface - Van der Waals attraction Potential- Interaction between two particles : DLVO theory - Steric Stabilization. (18 Hours)

UNIT II: SPECIAL NANOMATERIALS

Carbon Fullerenes and Nanotubes - Micro and Mesoporous Materials ordered and random mesoporous - Zeolites - Core-Shell Structures (metal oxide- metal polymer - oxide polymer) - Organic-Inorganic Hybrids (Class I & II) - Intercalation Compounds - Nanocomposites and Nanograined Materials. (18 Hours)

UNIT III: NANOSTRUCTURES FABRICATED BY PHYSICAL TECHNIQUES

Lithography (photo - phase shifting - electron beam - x ray - FIB - Neutral atomic beam lithography) - Nanomanipulation and Nanolithography (STM, AFM, NSOM) - Soft Lithography - microcontact printing - molding - nano imprint- Dip pen nanolithography- Assembly of Nanoparticles and Nanowires (capillary forces - dispersion interactions - shear force - electric field - covalently linked gravitational field - template assisted assembly) - Other Methods for Microfabrication. (18 Hours)

UNIT IV: CHARACTERIZATION AND PROPERTIES OF NANOMATERIALS

Structural Characterization - XRD - SAXS - SEM - TEM - SPM - Gas Adoption-Chemical Characterization - Optical- Electron Spectroscopy - Ionic Spectrometry - Physical Properties of Nanomaterials - Melting points and lattice constants - Mechanical - Optical properties - Surface Plasmon resonance - Quantum Size effects - Electrical Conductivity - Surface Scattering - Change of electronic structure - Quantum Transport - Effect of microstructures - Ferroelectrics and dielectrics - Superparamagnetism.

(18Hours)

UNIT V: APPLICATIONS OF NANOMATERIALS

Introduction - Molecular Electronics and Nanoelectronics - Nanobots -Biological Applications of Nanoparticles - Catalysis by Gold Nanoparticles -Band Gap Engineered Quantum Devices - Quantum well devices - Quantum dot devices- Nanomechanics - Carbon Nanotube Emitters -Photoeletrochemical Cells - Photonic Crystals and Plasmon Waveguides. (18Hours)

BOOK FOR STUDY:

Nanostructures and Nanomaterials - Synthesis, Properties and Applications, Guozhong Cao - Imperial College Press, London, 2004.

DETAILED REFERENCE:

Nanostructures and Nanomaterials - Synthesis, Properties and Applications, Guozhong Cao - Imperial College Press, London, 2004.

UNIT I : Chapter 1: 1.2 - 1.4, Chapter 2: 2.1 - 2.5

```
UNIT II : Chapter 6: 6.1 - 6.7
```

UNIT III : Chapter 7: 7.1 - 7.6

UNIT IV : Chapter 8: 8.1 - 8.4.6

UNIT V : Chapter 9: 9.1 - 9.10

BOOKS FORREFERENCE:

- Lynn. E. Foster Nanotechnology Science, Innovation & Opportunity Pearson Education, Inc., New Delhi - 2008.
- U. Kumar Nanotechnology A fundamental approach -- Agrobios (India), Jodhpur - 2008.
- 3. W. I. Atkinson Nanotechnology Jaico Publishing House, Mumbai 2009.
- 4. T. Pradeep Nano: The Essentials Tata McGraw Hill Education Private Limited, New Delhi 2010.

PHYSICS FOR BIOLOGICAL STUDIES

Semester: III

Code : 20PPH3E3C

COURSE OUTCOMES:

CO.	UPON COMPLETION OF THIS COURSE	PSO	COGNITIVE
NO.	THE STUDENTS WILL BE ABLE TO	ADDRESSED	LEVEL
CO-1	Explain the classical and quantum principles	PSO - 1, 3	K, U
	about the biomolecular structures.		
CO-2	Describe about the nucleic acids,	PSO - 1, 3	U, An
	carbohydrates, lipids and membranes.		
CO-3	Elaborate about bioenergetics.	PSO - 3	U, An
CO-4	Illustrate about the biophysics of neurons.	PSO - 1, 2	U, An
CO-5	Explain the role of radiation in bio physics	PSO - 1, 2	An, Ap

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	II			DUVSICS FOR			BIOLOGICAL STUDIES				Hours: 6	
Code :20PPH3E3C				PHYSICS FOR BIOLOGICAL STUDIES								Credits: 4
Course Outcomes	J	Progra	amme (P		come	5	P	-	mme s omes	Specif (PSO)	ic	Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	4	5	3	5	4	5	4	5	4	3	4.27
CO-2	5	4	5	5	4	3	5	4	5	3	4	4.27
CO-3	4	3	5	5	5	4	3	4	5	4	3	3.72
CO-4	5	5	4	3	4	3	5	5	4	4	3	4.09
CO-5	5	5	4	3	4	3	5	5	4	3	3	4
	Overall Mean Score						4.07					

Result: The score for this course is **4.07** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: BIOMOLECULAR STRUCTURES

Atoms, bonds and Molecules: Concepts of Classical Physics and Limitations -Quantum Principles of Atomic Structure - orbitals and bonds, Proteins: AminoAcids - Structural and organization of Proteins - Globular and Fibrous Proteins -Dynamics of Protein - folding - protein Engineering.(18 Hours)

UNIT II: NUCLEIC ACIDS, CARBOHYDRATES, LIPIDS AND MEMBERANES

Nucleic Acids - Principles of Base-pairing / Base-stacking - Nucleic Acid Families (A,B and Z) - Protein - Ligand Interaction - Monosaccharides - Disaccharides -Polysaccharides - Glycoproteins - Lipids-Classification and structure -Membranes (18 Hours)

UNIT III: BIOENERGESTICS

Thermodynamics: Reversible Thermodynamics - Irrivarsible Thermodynamics(ITD) - Photo and Chemo-bioenergetics: Photo bioenergetics - Chemo -
bioenergetics (Oxidative Phosphorylation)(18 Hours)

UNIT IV: BIOLOGICAL SYSTEMS

Neurobiophysics: The Nervous System - Molecular transport Across Cell Membranes - Nerve Impulse Generation - Signal Reception - Biomechanics : Cell Contractility and Motility - Cytoskeletal Motility - Dynamics of Aqua-and Aero motions. (18 Hours)

UNIT V: Radiation Biophysics

Ionising Radiation - Interaction of Radiation with Matter - Measurement of radiation (Dosimetry)- Radioactive Effects of Radiation - Radiation Protection and Therapy. (18 Hours)

BOOK FOR STUDY:

Essentials of Biophysics, P. Narayanan, New Age International (P) Limited Publishers, 2020

DETAILED REFERENCE:

Essentials of Biophysics, P. Narayanan, New Age International (P) Limited Publishers, 2020

UNIT I : 1.1-2.5 UNIT II : 3.1-5.2 UNIT III : 11.1-12.2 UNIT IV : 13.1 -14.3 UNIT V :15.1-15.6

BOOKS FOR REFERENCE:

- 1. Biophysical and Structural Aspects of Bioenergentics, Marten Wikstrom, Royal Society of Chemistry, 2011
- 2. Advanced Bioenergetics and Biodynamics, M. Amin, Capital Publishing Company, 2011
- 3. Biophysics, N. Arumugam and V. kumaresan, Saras Publication, 2016

BIOMEDICAL INSTRUMENTATION

Semester:III

Code : 20PPH3GE2 COURSE OUTCOMES: Hours: 4 Credits: 3

UPON COMPLETION OF THIS COURSE COGNITIVE CO. PSO NO. THE STUDENTS WILL BE ABLE TO ADDRESSED LEVEL CO-1 Explain the characteristics of bio potential **PSO -** 1 K, U recorders. CO-2 Discuss the requirements and design of **PSO -** 1 K, U artificial heart valves CO-3 Describe the model and mechanical PSO - 1, 2 U, An function of diagnostic instruments CO-4 Explain the working of operation theatre PSO - 1, 2 U, An equipments. CO-5 Illustrate the advanced techniques in PSO - 1, 2 U, An biomedical instrumentation.

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester : III BIOMEDICAL INSTRUMENTATION						т	Hours: 4						
Code : 2	20 PP I	13GE	2	BIOMEDICAL INSTRUMENTATION				Credits: 3					
Course Outcomes]	Progra	amme (P		Putcomes Programme Specific Outcomes (PSO)					Mean Score of CO's			
Outcomes	1	2	3	4	5	6	1	2	3	4	5	or CO's	
CO-1	3	4	3	4	3	3	4	5	4	3	2	3.45	
CO-2	4	5	4	4	3	3	4	4	5	2	3	3.73	
CO-3	5	4	4	4	3	2	4	5	4	3	2	3.63	
CO-4	4	5	4	4	3	3	4	4	5	3	2	3.73	
CO-5	4	4	4	4 2 3 4 4 5 3 3					3.63				
Overall Mean Score						3.63							

Result: The score for this course is **3.63** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: BIOPOTENTIAL RECORDERS

Characteristics of the recording system - Electrocardiography - Origin of cardiac action potential - ECG lead configuration - ECG recording set up -Phonocardiography - Echocardiography electroencephalography - origin of EEG - Action potentials of the brain - Evoked potentials. (12 Hours)

UNIT II: PHYSIOLOGICAL ASSIST DEVICES

Pace makers - Energy requirements to excite heart muscles - methods of stimulation, ventricular asynchronous pacemakers - artificial heart valves requirements for the design of artificial heart valves - different natural heart valves-differenttypesofartificialheartvalves. (12 Hours)

UNIT III: DIAGNOSTIC INSTRUMENTS

Heart - Lung machine - mechanical function of the heart - model of the heart - lung machine - oxygenators - bubble oxygenators - film oxygenators - Blood pumps - Kidney machine - Renel function - Dialysis - Extra corporeal Dialysis -Intracorporeal Dialysis Ventilators - Servo controlled Ventilators - Anesthesia machine - Flowmeters - Rotameter - Turbine flowmeter. (12 Hours)

UNIT IV: OPERATION THEATRE EQUIPMENT

Blood flow meter - Electromagnetic Blood flow meter - Ultrasonic Blood flow meter based on transit time principle - Ultrasonic doppler Blood flow meters -Laser based doppler Blood flow meters - NMR Blood flow meters - Cardiac output measurements - Fick's method, Measurement of Cardiac output by impedance change-Spirometer. (12Hours)

UNIT V: ADVANCES IN BIOMEDICAL INSTRUMENTATION

Endoscopes - Cryogenic surgery - Nuclear imaging technique - Computer tomography Scanner - Magnetic resonance imaging (MRI) - Fourier transform NMR - Magnetic relaxation and MRI parameters - MRI instrumentation - Positron emission tomography (PET) - Digital substraction Angiography (DSA) - Bio feedback instrumentation - Bio materials - Permanent implant - Transient implant.

(12 Hours)

BOOK FORSTUDY

Dr. M. Arumugam - Bio medical Instrumentation - Anuradha Publications -2006.

DETAILED REFERENCE

- Dr. M. Arumugam Bio medical Instrumentation Anuradha Publications -2006.
 - **UNIT I** : Chapter 4 : 4.2, 4.3 4.3.1, 4.3.2, 4.3.3, 4.3.7, 4.3.8, 4.4, 4.4.1
 - **UNIT II**: Chapter 5: 5.2, 5.2.1, 5.2.2, 5.2.3, 5.4, 5.4.1, 5.4.2, 5.4.3.
 - **UNIT III:** Chapter 5: 5.7, 5.7.1, 5.7.2, 5.7.3, 5.7.4, 5.8, 5.8.1, 5.8.2, Chapter 6: 6.8, 6.9, 6.9.1
 - **UNIT IV :** Chapter 6: 6.10, 6.10.1, 6.10.2, 6.10.3, 6.10.4, 6.11, 6.12.2.
 - **UNIT V** : Chapter 10: 10.4, 10.5, 10.6, 10.7, 10.10.3, 10.10.4, 10.10.8,

10.11,10.12, 10.13, 10.14

BOOKS FORREFERENCE

- 1. R. S. Khandpur Handbook of Biomedical Instrumentation Tata Mc Graw-Hill, New Delhi - 1999.
- Leslie Cromwell, Fred J. Weibell & Erich A. Pfeiffer Biomedical Instrumentation and Measurements, II edition - Prentice Hall of India Private Limited, New Delhi - 2003.

HUMAN RIGHTS AND DUTIES

Semester: III

Code : 20PSE3H02

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO - 1	Discuss the Meaning and Definitions of Human Rights and Historical Evolution of Human Rights.	PSO - 5	K, A, E
CO - 2	Explain the Human Rights Education and Constitutional Provision for protection of Human Rights in India.	PSO - 5	K, A, E
CO - 3	Assess the Human Rights Activities in India	PSO - 5	K, A, E
CO - 4	Analyse the Welfare Acts of Women in India.	PSO - 5	K, A, E
CO - 5	Evaluate the need of Welfare Acts for the protection of Human Rights in India.	PSO - 5	K, A, E

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: Il		т	ттъл 7	וסדות	Сит	с <u>л</u> ыт	וזידיוות	-C		Hours: 2				
Code : 2	0PSE	3H02			101017		RIGHTS AND DUTIES					Credit: 1		
Course Outcomes	(PO) Outcomes (PSO)						C	Mean Score of						
1 2		3	4	5	6	1	2	3	4	5	CO's			
CO-1	5	5	5	5	5	3	2	3	3	2	5	3.90		
CO-2	5	5	5	5	5	3	2	3	3	2	5	3.90		
CO-3	5	5	5	5	5	3	2	3	3	2	5	3.90		
CO-4	5	5	5	5	5	3	2	3	3	2	5	3.90		
CO-5 5 5 5 5 5 3 2 3 3 2 5							3.90							
Overall Mean Score								3.90						

Result: The score for this course is **3.90** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos = <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 2

UNIT I

Introduction - Meaning and Definitions of Human Rights - Historical Evolution of Human Rights - Universal Declaration of Human Rights 1948-Human Rights Day. (6 Hours)

UNIT II

Human Rights Education - Constitutional Provision for protection of Human Rightsin India - Fundamental Rights and Directive principles of State Policy -Fundamental Duties - Protection of Human Rights Act of 1993.(6 Hours)

UNIT III

Human Rights Activities in India - National Human Rights Commission - StateHuman Rights Commission - Structure - functions - Human Rights courts - Role ofNGOs - Amnesty - People's Watch.(6 Hours)

UNIT IV

The Child Marriage Restraint Act, 1929 - Amended in 1978 - The Special Marriage Act, 1954 - The Hindu Marriage Act, 1955 - The Hindu Adoption and Maintenance Act, 1956 - The Hindu Succession Act, 1956 - The Hindu Minority and Guardianship Act, 1956 - Suppression of Immoral Traffic in Women and Girls Act, 1956 - Devadasis Abolition Act, 1958 - The Hindu Widow Remarriage Act, 1959 -The Dowry Prohibition Act, 1961 - The Maternity Benefit Act, 1961. **(6 Hours)**

UNIT V

The Medical Termination of Pregnancy Act, 1971 - Criminal Law (Amendment) Act, 1983 - The Family Courts Act, 1984. Indecent Representation of Women Prohibition Act, 1986 - Dissolution of Muslim Marriage Act, 1939 and Muslim Women's (Protection of Rights in Divorce) Act, 1986 - Prohibition of Sati Act and Sati Prevention Act, 1987 - Abolition of Female Infanticide - Self Respect Marriage Act - Hindu Women's Property Act - The Tamil Nadu Prohibition of Harassment of Women Act, 1998 - (Protection of Children from Sexual Offences) POCSO Act 2012. (6 Hours)

COURSE BOOK:

- Human Rights and Duties Dr. P. Floras Mary & Dr. V. Santhi, Pandiyanadu Cultural Foundation, 3/26, Nellaiyappa Puram, 1st Street, Thirunagar, Madurai, 2021.
- > Website: pandiyanadu.in.

BOOKS FOR REFERENCE

- Justice Iyer, Dr. Ambedkar and The Dalit Future, B.R. Publishing Co, New Delhi.
 1990
- 2. Bajwa, G.S, Human Rights in India, Anmol Publications Pvt. Ltd., New Delhi, 1995.
- Paramasivam Sivagami, Human Rights A Study, Sriram Computer Printer & offset, Salem, Tamilnadu, 1998.
- 4. Rajendar Mangari The Protection Of Human Rights Act and Relating Laws, Book Agency, Hyderabad - 1., 1999.
- 5. Jayapalan, N, Women and Human Rights, Atlantic Publishers and Distributors, New Delhi., 2001.

QUANTUM MECHANICS - II

Semester: IV

Code : 20**PPH4C**08

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Revise the fundamental concepts of quantum mechanics.	PSO - 1	K, U
CO-2	Formulate approximate methods to solve	PSO - 2	An, C
	eigen value problems.	PSO - 3	
CO-3	Explain the concepts of propagators and	PSO - 1	U, An, C
	perturbation method to solve time evolution	PSO - 2	
	problems.	PSO - 3	
CO-4	Discuss the manifestation of spin and	PSO - 2	An, Ap
	development of Dirac equation.		
CO-5	Describe the use of quantization formalism of	PSO - 1	K, An
	electromagnetic field.	PSO - 2	

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: IV						IICS	тт		Hours: 6			
Code : 2	ode : 20 PPH4C 08				QUANTUM MECHANICS - II							
Course Outcomes]	Progra		mme Outcomes I (PO)				Programme Specific Outcomes (PSO)				Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	4	4	5	3	2	5	4	4	3	4	3.90
CO-2	5	3	4	5	4	2	4	5	5	3	4	4.00
CO-3	5	2	4	4	4	2	5	5	5	2	4	3.81
CO-4	5	3	4	5	3	4	4	5	3	2	4	3.81
CO-5	5	3	5	5 5 3 4 5 5 4 2 3						4.00		
	Overall Mean Score							3.90				

Result: The score for this course is **3.90** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 6

UNIT I: APPROXIMATION METHODS FOR STATIONARY STATES

Perturbation theory for discrete levels: Non-degenerate - Degenerate -Applications. Variational method: Ground State energy - Application to excited states - Exchange interaction. WKB approximation: Bohr - Sommerfeld Quantum Condition - Applications. (18 Hours)

UNIT II: EVOLUTION WITH TIME

General Solution of Schrodinger equation - Propagators - Sudden Approximation -Perturbation theory - Transition Amplitude - Selection rules - First and Second Order transitions with Constant Perturbation - Scattering of a particle by a Potential - Inelastic Scattering - Double Scattering by two non-overlapping scatterers. (18 Hours)

UNIT III: PERTURBATION THEORY AND ALTERNATIVE PICTURES

Harmonic perturbations - Interaction of an atom with EM radiation - Dipole Approximation - Einstein's Coefficients - Schrodinger picture - Heisenberg picture - Matrix mechanics - Electromagnetic wave as Harmonic Oscillator -Spontaneous emission - Interaction picture - Scattering operator. (18 Hours)

UNIT IV: RELATIVISTIC QUANTUM MECHANICS

Klein-Gordon equation - Limitations - Dirac equations - Dirac matrices - Plane wave solutions - Spin of the Dirac particle - Negative energy states - Dirac particle in EM fields - Dirac equation in Central field - Spin magnetic moment - Spin Orbit Energy. (18 Hours)

UNIT V: QUANTUM FIELD THEORY

Lagrangian field theory - Non-relativistic fields - Relativistic fields: Klein-Gordon field, Dirac field, Electromagnetic field - Interacting fields. (18 Hours)

BOOK FORSTUDY

- P. M. Mathews & K. Venkatesan A Textbook of Quantum Mechanics, Second Edition (Seventh Reprint 2014) - McGraw Hill Education (India) Private Limited, New Delhi.
- V. K. Thankappan Quantum Mechanics, Third edition New Age International Publishers - 2012.

DETAILED REFERENCE

 P. M. Mathews & K. Venkatesan - A Textbook of Quantum Mechanics, Second Edition (Seventh Reprint 2014) - McGraw Hill Education (India) Private Limited, New Delhi.

UNIT I: Chapter 5: 5.1 to 5.13
UNIT II: Chapter 9: 9.1, 9.2, 9.4, 9.7 to 9.13
UNIT III: Chapter 9: 9.14 to 9.22
UNIT IV: Chapter 10: 10.1 to 10.11, 10.16, 10.17

 V. K. Thankappan - Quantum Mechanics, Third edition - New Age International Publishers - 2012.

UNIT V: Chapter 11: All sections.

BOOKS FOR REFERENCE:

- 1. L. I. Schiff Quantum Mechanics, III edition Tata McGraw Hill, New Delhi 1968.
- Bjorken & Drell Relativistic Quantum Fields Tata McGraw Hill, New Delhi -1965.
- 3. J. J. Sakurai Advanced Quantum Mechanics Pearson Education Inc., New Delhi 2008.
- S. L. Kakani and H. M. Chandalia Quantum Mechanics Sultan & Sons, New Delhi - 2007.
- 5. Chatwal Anand Quantum Mechanics Himalaya Publishing House, Mumbai 2007.

NUCLEAR AND PARTICLE PHYSICS

Semester: IV Code : 20PPH4C09

COURSE OUTCOMES:

Hours: 6 Credits: 5

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Explain the various decay processes in nuclear reactions.	PSO - 1	K, U
CO-2	Describe the properties of Gamma radiation.	PSO - 2	An
CO-3	Analyze the concepts of various Nuclear Models and principles of detectors.	PSO - 1,2	U, An
CO-4	Classify elementary particles and explain their interaction with matter.	PSO - 1,2	U, An
CO-5	Discuss the nature and effects of cosmic rays.	PSO - 1	K, U

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	V			ΝΠΟΙ ΈΧΡ ΧΝΙ			D PARTICLE PHYSICS				Hours: 6	
Code : 20PPH4C09				NU	Credits: 5							
Course Outcomes	Programme Outcomes (PO)						urse (PO) Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	4	5	5	3	2	5	4	3	4	2	3.81
CO-2	5	4	4	4	3	2	4	5	4	4	3	4.00
CO-3	5	3	4	5	4	2	5	5	4	4	3	4.00
CO-4	5	3	4	5	4	2	5	5	4	5	2	4.00
CO-5	5	3	4	5	3	2	5	4	3	3	2	3.54
	Overall Mean Score						3.87					

Result: The score for this course is **3.87** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

UNIT I: ALPHA AND BETA DECAY

Determination for q/m for the α -particle - Range of α -particles - Energy of α particles - Range - Velocity - Energy - Half Life Relations - Alpha Decay -Energy - Mass Number - Alpha particle spectra - Gamow's theory of α -decay -Advances in the theory of α -decay - Beta spectroscopy - The Neutrino -Energy - Half life relationships - Fermi theory of β -decay - Classification of Beta Transitions - General theory of beta-decay - Electron Capture - Violation of Parity Conservation inBeta decay. (18Hours)

UNIT II: GAMMA RADIATION

Measurement of gamma ray energies - Multipole Radiations - Internal Conversion- Internal pair creation - Nuclear Isomerism - Coulomb Excitation -Angular Distribution and Directional correlation in γ-emission - Measurements of Lifetimes of Nuclear States - Nuclear Resonance Fluorescence - Mossbauer Effect. (18 Hours)

UNIT III: NUCLEAR MODELS

Fermi Gas model - Liquid drop model - Shell model - Extreme Single Particle model - Single Particle model - Collective Nuclear model - Unified model -Superconductivity model - Ionization chamber - Semiconductor Detectors -Regions of multiplicative operation - Proportional counter - Geiger Muller Counter - Scintillation Counters - Cerenkov Counters - Cloud Chamber.

(18 Hours)

UNIT IV: ELEMENTARY PARTICLES

Classification of elementary particles - Leptons - Baryons - Fundamental interaction in nature - Gravitational interaction - Electromagnetic interaction -Weak interaction - Strong interaction - Particle instability - Conservation laws -Resonances- Quark Model. (18 Hours)

UNIT V: COSMIC RAYS

Discovery of cosmic rays - Nature of cosmic rays - Origin of cosmic rays - Soft and hard components - Variations in cosmic rays - Geomagnetic effect of cosmic rays - Theory of cosmic ray shower - Discovery of muons - Interactions of muon with matter - Discovery of the π meson - Origin of cosmic rays. (18 Hours)

COURSE BOOKS:

- 1. D. C. Tayal Nuclear Physics Himalaya Publishing House 2014.
- 2. S. L. Kakani and Shubra Kakani Nuclear and Particle Physics Vinod sishtha for Viva Books Pvt. Ltd. - 2008.

DETAILED REFERENCE:

1. D. C. Tayal - Nuclear Physics - Himalaya Publishing House - 2014.

UNIT I : Chapter 5: 5.1-5.8, Chapter 6: 6.1-6.9

UNIT II : Chapter 7: 7.1 - 7.11

UNIT III : Chapter 9: 9.1 - 9.8, Chapter 4: 4.2 - 4.9

2. S. L. Kakani and Shubra Kakani - Nuclear and Particle Physics - Vinod sishtha for Viva Books Pvt. Ltd. - 2008.

UNIT IV : Chapter 9: 9.3 - 9.7,9.10

UNIT V : Chapter 10: 10.1-10.6, 10.10-10.11, 10.13-10.15

BOOKS FORREFERENCE:

- 1. Irving Kaplan Nuclear Physics Narosa Publishing House, New Delhi 2002.
- 2. S. B. Patel Nuclear Physics New Age International Publishers, New Delhi 2012.
- 3. Srivastava Fundamentals of Nuclear Physics Rastogi Publications, New Delhi 2011.

MOLECULAR SPECTROSCOPY

Semester: IV

Code : 20PPH4C10

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Classify the electromagnetic spectrum and discuss the rotation of the molecules	PSO - 1	K, U
CO-2	Discuss the vibrations of the molecules of different elements	PSO - 1, 2	U, An
CO-3	Analyze the electronic spectra of molecules.	PSO - 2	An, Ap
CO-4	Interpret the structure of molecules using IR and Raman spectra.	PSO - 1, 2	U, An
CO-5	Describe the principles of nuclear magnetic resonance spectroscopy and its recent applications.	PSO - 2	An, Ap

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: I	V				MOT	FCIII	TD CD	PECTR		DV		Hours: 6
Code : 20PPH4C10					Credits: 4							
Course Outcomes	Programme Outcomes (PO)						rse (PO) Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	5	4	4	4	3	5	4	4	4	3	3.18
CO-2	5	5	4	4	3	3	5	5	4	3	4	3.18
CO-3	5	5	5	5	4	4	4	5	4	4	3	3.45
CO-4	5	5	5	5	5	4	5	5	4	3	4	3.63
CO-5	5	5	5	5	5	4	4	4	4	4	3	3.45
	Overall Mean Score 3.37							3.37				

Result: The score for this course is **3.37**(High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Hours: 6

Credits: 4

UNIT I: ROTATION OF MOLECULES

Classification of Molecules - Interaction of Radiation with Rotating Molecule-Rotational Spectra of Rigid Diatomic Molecules - Isotope Effect in Rotational Spectra - Intensity of Rotational Lines - Non-Rigid Rotator - Vibrational Excitation Effect - Liner Polyatomic Molecules - Symmetric Top Molecules - Asymmetric Top Molecules - Stark Effect - Quadruple Hyperfine Interaction - Interstellar Molecules- Microwave Spectrometer - Information Derived from Rotational Spectra. (18 Hours)

UNIT II: INFRARED SPECTROSCOPY

Vibrational Energy of a Diatomic Molecule - Infrared Spectra - Preliminaries -Infrared Selection Rules - Vibrating Diatomic Molecule - Diatomic Vibrating Rotator - Asymmetry of Rotation - Vibration Band - Vibration of Polyatomic Molecules - More About Anharmonicity - Fermi Resonance - Hydrogen Bonding-Rotation - Vibration Spectra of Polyatomic Molecules - Normal Modes of Vibration in Crystal-Solid State Effects - Interpretation of Vibrational Spectra - Group Frequencies - Inversion Vibration of Ammonia - IR Spectrophotometer -Instrumentation - Sample Handling Techniques - Fourier Transform Infrared Spectroscopy - Applications. (18 Hours)

UNIT III: ELECTRONIC SPECTRA OF DIATOMIC MOLECULES

Vibrational Coarse Structure - Vibrational Analysis of Band Systems - Deslandres Table - Progressions and Sequences - Information Derived from vibrational Analysis - Franck - Condon Principle - Intensity of Vibrational Electronic Spectra -Rotational Fine Structure of Electronic - Vibration Spectra - The Fortrat Parabolae -Dissociation - Predissociation - Electronic Angular Momentum in Diatomic Molecules - Photoelectron Spectroscopy. (18 Hours)

UNIT IV: RAMAN SPECTROSCOPY

Theory of Raman Scattering - Rotational Raman Spectra - Vibrational Raman Spectra - Mutual Exclusion Principle - Raman Spectrometer - Sample Handling Techniques - Fibre Coupled Raman Spectrometer - Fourier Transform Raman Spectrometer - Polarization of Raman Scattered Light - Single Crystal Raman Spectra - Structure Determination Using IR and Raman Spectroscopy - Raman Investigation of Phase Transitions - Proton Conduction in Solids - Raman Spectral Study - Industrial Applications - Resonance Raman Scattering - Raman Microscopy. (18 Hours)

UNIT V: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Magnetic properties of Nuclei - Resonance Condition - NMR Instrumentation - Additional Experimental Techniques - Relaxation Process - Bloch Equations.

SURFACE ENHANCED RAMAN SCATTERING:

Surfaces for SERS Study - Enhancement Mechanisms - Surface Selection Rules -Representative Spectra - SERS Microprobe - Applications of SERS. (18 Hours)

BOOK FOR STUDY:

Molecular Structure and Spectroscopy - G.Aruldhas, PHI Learning Private Limited New Delhi, 2009.

DETAILED REFERENCE:

Molecular Structure and Spectroscopy - G.Aruldhas, PHI Learning Private Limited New Delhi, 2009.

UNIT I	: Chapter 6: 6.1 - 6.15
UNIT II	: Chapter 7: 7.1 - 7.19
UNIT III	: Chapter 9: 9.1 - 9.12
UNIT IV	: Chapter 8: 8.1 - 8.17
UNIT V	: Chapter 10: 10.1 - 10.6, Chapter 14: 14.1 - 14.7

BOOK FOR REFERENCE:

 Fundamentals of Molecular Spectroscopy, Colin N. Banwell, Tata McGraw - Hill College - IV Edition - 1994.

PROJECT

Semester: IV

Code : 20PPH4R01

COURSE OUTCOMES:

CO. NO.	UPON COMPLETION OF THIS COURSE THE STUDENTS WILL BE ABLE TO	PSO ADDRESSED	COGNITIVE LEVEL
CO-1	Survey the literature in their specified fields.	PSO - 4	K, U
CO-2	Choose the methodology.	PSO - 4	An
CO-3	Prepare the flowchart of their work.	PSO - 4	Ар
CO-4	Execute the work in a proper way and interpret their findings.	PSO - 4	Ар
CO-5	Prepare the report, present and publish their findings.	PSO - 4	Ap, C

RELATIONSHIP MATRIX FOR COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Semester: V	71			т				BOIECT				Hours: 12
Code : 20PPH4R01				PROJECT							Credits: 6	
Course Outcomes	Programme Outcomes (PO)						Programme Specific Outcomes (PSO)					Mean Score of
Outcomes	1	2	3	4	5	6	1	2	3	4	5	CO's
CO-1	5	4	4	4	4	3	5	4	5	4	3	4.09
CO-2	5	5	3	3	4	3	4	3	5	3	2	3.64
CO-3	5	3	4	3	4	2	4	3	5	3	2	3.45
CO-4	5	4	4	4	4	3	3	4	5	3	3	3.82
CO-5	5	4	3	4	4	4	4	3	5	4	3	3.91
			0	vera	ll Me	an Sco	ore					3.78

Result: The score for this course is **3.78** (High Relationship)

Note:

Mapping	1-20%	21 - 40%	41 - 60%	61 - 80%	81 - 100%
Scale	1	2	3	4	5
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0
Quality	Very Poor	Poor	Moderate	High	Very High

Values Scaling:

Mean Score of Cos = <u>Total of Values</u>	Mean Overall Score for Cos= <u>Total of Mean Scores</u>
Total No. of Pos & PSOs	Total No. of Cos

Credits: 6

- Selection of the Project
- ✤ Literature Survey
- Data Collection
- Preliminary work
- First Review
- Incorporation of the suggestions
- Second Review
- Completion of the project
- Report writing
- Submission of the report and Preparation of Power point
- Preparation for Viva-voce